Understanding the spatio-temporal variability of phytoplankton biomass distribution in a microtidal Mediterranean estuary

Abstract Understanding the spatio-temporal variability of phytoplankton in aquaculture zones is necessary for the prevention and/or prediction of harmful algal bloom events. Synoptic cruises, time series analyses of physical and biological parameters, and 3D modeling were combined to investigate the variability of phytoplankton biomass in Alfacs Bay at basin scale. This microtidal estuary located in the NW Mediterranean is an important area of shellfish and finfish exploitation, which is regularly affected by toxic outbreaks. Observations showed the existence of a preferential phytoplankton accumulation area on the NE interior of the bay. This pattern can be observed throughout the year, and we show that it is directly linked to the physical forcing in the bay, in particular, the interplay between freshwater input and wind-induced turbulence. Both drivers affect the strength of the estuarine circulation, explaining nearly 75% of the variability in phytoplankton biomass. More cells are retained when stratification is weakened and the estuarine circulation reduced, while flushing rates are higher during times of increased stratification and stronger estuarine flow. This has been confirmed by using a 3D hydrodynamic model with Eulerian tracers. Nutrients, while important to support phytoplankton populations, have been found to play only a secondary role in explaining this variability at basin scale.

[1]  Marta Estrada,et al.  Development of a toxic Alexandrium minutum Halim (Dinophyceae) bloom in the harbour of Sant Carles de la Ràpita (Ebro Delta, northwestern Mediterranean) , 1990 .

[2]  E. Berdalet,et al.  Modulation of ecdysal cyst and toxin dynamics of two Alexandrium (Dinophyceae) species under small-scale turbulence , 2007 .

[3]  Esther Garcés,et al.  CHARACTERIZATION OF NW MEDITERRANEAN KARLODINIUM SPP. (DINOPHYCEAE) STRAINS USING MORPHOLOGICAL, MOLECULAR, CHEMICAL, AND PHYSIOLOGICAL METHODOLOGIES 1 , 2006 .

[4]  J. Galve,et al.  Nutrient sources and dynamics in a mediterranean fluvial regime (Ebro river, NE Spain) and their implications for water management , 2005 .

[5]  M. Fernández-Tejedor,et al.  Acute LD50 of a Gyrodinium corsicum natural population for Sparus aurata and Dicentrarchus labrax , 2004 .

[6]  Factors controlling spatial variability in ammonium release within an estuarine bay (Alfacs Bay, Ebro Delta, NW Mediterranean) , 1992 .

[7]  H. Utermöhl Zur Vervollkommnung der quantitativen Phytoplankton-Methodik , 1958 .

[8]  M. Delgado Fitoplancton de las bahías del delta del Ebro , 1987 .

[9]  Nixon Bahamon,et al.  Nutrient fluxes from the Ebro River and subsequent across-shelf dispersion , 2002 .

[10]  P. Smith A Semi-Implicit, Three-Dimensional Model for Estuarine Circulation , 2006 .

[11]  A. Penna,et al.  Toxicity and ribosomal DNA of the dinoflagellate Dinophysis sacculus (Dinophyta) , 2000 .

[12]  Antonio Turiel,et al.  Climatic forcing on hydrography of a Mediterranean bay (Alfacs Bay) , 2009 .

[13]  M. Estrada,et al.  The role of inorganic nutrients and dissolved organic phosphorus in the phytoplankton dynamics of a Mediterranean bay: A modeling study , 2010 .

[14]  J. Camp,et al.  Pseudo-nitzschia spp. (Bacillariophyceae) and dissolved organic matter (DOM) dynamics in the Ebro Delta (Alfacs Bay, NW Mediterranean Sea) , 2009 .

[15]  C. Yentsch,et al.  A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence , 1963 .

[16]  D. L. Aksnes,et al.  Silicate as regulating nutrient in phytoplankton competition , 1992 .

[17]  M. Delgado,et al.  Hidrografía de las bahías del delta del Ebro , 1987 .

[18]  Manfred Ehrhardt,et al.  Methods of seawater analysis , 1999 .

[19]  E. Berdalet,et al.  Species‐specific physiological response of dinoflagellates to quantified small‐scale turbulence 1 , 2007 .

[20]  Marina Montresor,et al.  The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. , 2012, Harmful algae.

[21]  E. Forés Ricefields as filters , 1989, Archiv für Hydrobiologie.

[22]  G. Basterretxea,et al.  Alexandrium minutum resting cyst distribution dynamics in a confined site , 2010 .

[23]  J. Sharples,et al.  Swimming for survival: A role of phytoplankton motility in a stratified turbulent environment , 2008 .

[24]  B. Reguera,et al.  Harmful Dinophysis species: A review , 2012 .

[25]  Clara Llebot,et al.  Hydrographical forcing and phytoplankton variability in two semi-enclosed estuarine bays , 2011 .

[26]  E. Berdalet,et al.  Variability of deep chlorophyll maximum characteristics in the Northwestern Mediterranean , 1993 .

[27]  T. Smayda Adaptations and selection of harmful and other dinoflagellate species in upwelling systems. 2. Motility and migratory behaviour , 2010 .

[28]  J. Camp,et al.  In situ growth rate and distribution of the ichthyotoxic dinoflagellate Gyrodinium corsicum Paulmier in an estuarine embayment (Alfacs Bay, NW Mediterranean Sea) , 1999 .

[29]  Jonathan Sharples,et al.  Phytoplankton motility and the competition for nutrients in the thermocline , 2007 .

[30]  M. Vidal Phosphate dynamics tied to sediment disturbances in Alfacs Bay (NW Mediterranean) , 1994 .

[31]  M. Estrada,et al.  Hydrodynamic states in a wind-driven microtidal estuary (Alfacs Bay) , 2012 .

[32]  Jonathan Sharples,et al.  Recipe for 1‐D Lagrangian particle tracking models in space‐varying diffusivity , 2004 .

[33]  J. Camp,et al.  Identification and characterisation of the dominant Pseudo-nitzschia species (Bacillariophyceae) along the NE Spanish coast (Catalonia, NW Mediterranean) , 2008 .