Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials.

The huge diversity of hierarchical micro-/nano-rigid structures existing in biological systems is increasingly becoming a source of inspiration of materials scientists and engineers to create next-generation advanced functional materials. In the past decades, these multiscale hierarchical structures have been intensively investigated to show their contributions to high performance in mechanical properties. Recently, accompanied with the development of nanotechnology, some biologically hierarchical rigid structures have been duplicated and mimicked in artificial materials through hierarchical organization of micro-/nano-building blocks. In this critical review, we will present biological rigid structural models, functional micro-/nano-building blocks, and hierarchical assembly techniques for the manufacture of bio-inspired rigid structural functional materials (177 references).

[1]  Massoud Motamedi,et al.  Collagen Coating Promotes Biocompatibility of Semiconductor Nanoparticles in Stratified LBL Films , 2003 .

[2]  Francois Barthelat,et al.  Biomimetics for next generation materials , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Francois Barthelat,et al.  Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials , 2009 .

[4]  P. Aken,et al.  Toughening through nature-adapted nanoscale design. , 2009, Nano letters.

[5]  F. Cui,et al.  Observations of damage morphologies in nacre during deformation and fracture , 1995 .

[6]  Y. Shao-horn,et al.  Electrostatic Layer-by-Layer Assembled Au Nanoparticle/MWNT Thin Films: Microstructure, Optical Property, and Electrocatalytic Activity for Methanol Oxidation , 2009 .

[7]  Wei-Han Huang,et al.  Bioinspired Assembly of Colloidal Nanoplatelets by Electric Field , 2009 .

[8]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[9]  Andrew R. Parker,et al.  Biomimetics of photonic nanostructures. , 2007, Nature nanotechnology.

[10]  Eduardo Saiz,et al.  A novel biomimetic approach to the design of high-performance ceramic–metal composites , 2010, Journal of The Royal Society Interface.

[11]  M. Boyce,et al.  Materials design principles of ancient fish armour. , 2008, Nature materials.

[12]  K. Katti,et al.  Platelet interlocks are the key to toughness and strength in nacre , 2005 .

[13]  M. El-Sayed,et al.  Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. , 2006, Chemical Society reviews.

[14]  Arvind Kumar,et al.  Manganese(II) Oxide Nanohexapods: Insight into Controlling the Form of Nanocrystals , 2006 .

[15]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  A. Govindaraj,et al.  Graphene: the new two-dimensional nanomaterial. , 2009, Angewandte Chemie.

[17]  G. Graff,et al.  Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. , 2010, ACS nano.

[18]  S. Gwo,et al.  Layer-by-layer assembly of three-dimensional colloidal supercrystals with tunable plasmonic properties. , 2010, Journal of the American Chemical Society.

[19]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[20]  Y. Bai,et al.  Effects of nanostructures on the fracture strength of the interfaces in nacre , 2003 .

[21]  V. Tsukruk,et al.  Freely Suspended Gold Nanoparticle Arrays , 2005 .

[22]  A Paul Alivisatos,et al.  Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. , 2007, Nano letters.

[23]  Geoffrey A. Ozin,et al.  Clay Bragg Stack Optical Sensors , 2008 .

[24]  V. Bulović,et al.  Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. , 2007, Nano letters.

[25]  Y. Shan,et al.  Triple‐Helix Scaffolds of Grafted Collagen Reinforced by Al2O3–ZrO2 Nanoparticles , 2006 .

[26]  T. Sasaki,et al.  Layer-by-layer assembly of gold nanoparticles with titania nanosheets: control of plasmon resonance and photovoltaic properties , 2010 .

[27]  K. Katti,et al.  Modeling microarchitecture and mechanical behavior of nacre using 3D finite element techniques Part I Elastic properties , 2001 .

[28]  Xiaoping Zhou,et al.  Complex PbTe hopper (skeletal) crystals with high hierarchy. , 2005, Chemical communications.

[29]  S. Stankovich,et al.  Preparation and characterization of graphene oxide paper , 2007, Nature.

[30]  Mingyuan Gao,et al.  From Water‐Soluble CdTe Nanocrystals to Fluorescent Nanocrystal–Polymer Transparent Composites Using Polymerizable Surfactants , 2003 .

[31]  Nikodem Tomczak,et al.  Designer polymer–quantum dot architectures , 2009 .

[32]  Katsuhiko Ariga,et al.  Advances in Biomimetic and Nanostructured Biohybrid Materials , 2010, Advanced materials.

[33]  M. Osada,et al.  Exfoliated oxide nanosheets: new solution to nanoelectronics , 2009 .

[34]  Stephen Mann,et al.  Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. , 2009, Nature materials.

[35]  Markus J. Buehler,et al.  Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization , 2007 .

[36]  F. Mizukami,et al.  Highly Luminescent Flexible Quantum Dot–Clay Films , 2008 .

[37]  Zhong Lin Wang,et al.  Heterogeneous ultrathin films fabricated by alternate assembly of exfoliated layered double hydroxides and polyanion. , 2008, Chemical communications.

[38]  W. Tseng,et al.  Using a Layer‐by‐Layer Assembly Technique to Fabricate Multicolored‐Light‐Emitting Films of CdSe@CdS and CdTe Quantum Dots , 2006 .

[39]  Hong-Bin Yao,et al.  Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks. , 2010, Angewandte Chemie.

[40]  Chao Gao,et al.  Simultaneous photoluminescence import and mechanical enhancement of polymer films using silica-hybridized quantum dots , 2010 .

[41]  C. M. Alves,et al.  Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: an overview of the last decade , 2010 .

[42]  R. Vaia,et al.  Flexible Silk–Inorganic Nanocomposites: From Transparent to Highly Reflective , 2010 .

[43]  Yuh J. Chao,et al.  Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone , 2004 .

[44]  L. A. Genova,et al.  Synthesis of porous biomorphic α/β-Si3N4 composite from sea sponge , 2008 .

[45]  K. Satyanarayana,et al.  Layered hydroxide salts: Synthesis, properties and potential applications , 2007 .

[46]  Zhiyong Tang,et al.  Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires , 2002, Science.

[47]  P. Colombo,et al.  Fabrication of ceramic components with hierarchical porosity , 2010 .

[48]  A. Waas,et al.  Ultrastrong and Stiff Layered Polymer Nanocomposites , 2007, Science.

[49]  Shuhong Yu Bio-inspired Crystal Growth by Synthetic Templates , 2006 .

[50]  V. Tsukruk,et al.  Compliant, Robust, and Truly Nanoscale Free‐Standing Multilayer Films Fabricated Using Spin‐Assisted Layer‐by‐Layer Assembly , 2004 .

[51]  M. Allen,et al.  Microcrimped Collagen Fiber‐Elastin Composites , 2010, Advanced materials.

[52]  S. Hollister Scaffold Design and Manufacturing: From Concept to Clinic , 2009, Advanced materials.

[53]  Peter Fratzl,et al.  Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction , 1999 .

[54]  Peidong Yang,et al.  Tunable plasmonic lattices of silver nanocrystals. , 2007, Nature nanotechnology.

[55]  Ulrich B Wiesner,et al.  Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids. , 2007, Nature materials.

[56]  P H Krebsbach,et al.  Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. , 2003, Biomaterials.

[57]  M. Antonietti,et al.  Complex Concaved Cuboctahedrons of Copper Sulfide Crystals with Highly Geometrical Symmetry Created by a Solution Process , 2006 .

[58]  Ya-Li Li,et al.  Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis , 2004, Science.

[59]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[60]  Bumjoon J. Kim,et al.  Free-standing nanocomposite multilayers with various length scales, adjustable internal structures, and functionalities. , 2009, Journal of the American Chemical Society.

[61]  D. Schiraldi,et al.  Foam-like materials produced from abundant natural resources , 2008 .

[62]  N. Kotov,et al.  Nanorainbows: graded semiconductor films from quantum dots. , 2001, Journal of the American Chemical Society.

[63]  S. Weiner,et al.  Lamellar bone: structure-function relations. , 1999, Journal of structural biology.

[64]  O. Ikkala,et al.  Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. , 2010, Nano letters.

[65]  Frank Marlow,et al.  Opals: status and prospects. , 2009, Angewandte Chemie.

[66]  K. Schulten,et al.  Molecular biomimetics: nanotechnology through biology , 2003, Nature materials.

[67]  G. Lu,et al.  Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. , 2009, ACS nano.

[68]  Himadri S. Gupta,et al.  Tough Lessons From Bone: Extreme Mechanical Anisotropy at the Mesoscale , 2008 .

[69]  Stuart J. Rowan,et al.  Biomimetic mechanically adaptive nanocomposites , 2010 .

[70]  Liangti Qu,et al.  Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off , 2008, Science.

[71]  Liheng Wu,et al.  Direct fabrication of photoconductive patterns on LBL assembled graphene oxide/PDDA/titania hybrid films by photothermal and photocatalytic reduction , 2010 .

[72]  G. Ozin,et al.  Electroactive inverse opal: a single material for all colors. , 2009, Angewandte Chemie.

[73]  Andrew I. Cooper,et al.  Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles , 2005, Nature materials.

[74]  Zhiyong Tang,et al.  Self-Assembly of CdTe Nanocrystals into Free-Floating Sheets , 2006, Science.

[75]  Yuya Oaki,et al.  Bridged Nanocrystals in Biominerals and Their Biomimetics: Classical Yet Modern Crystal Growth on the Nanoscale , 2006 .

[76]  Yadong Yin,et al.  Highly tunable superparamagnetic colloidal photonic crystals. , 2007, Angewandte Chemie.

[77]  Shangjr Gwo,et al.  Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling. , 2008, Journal of the American Chemical Society.

[78]  Ulrike G K Wegst,et al.  Biomaterials by freeze casting , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[79]  Moungi G Bawendi,et al.  Heterojunction photovoltaics using printed colloidal quantum dots as a photosensitive layer. , 2009, Nano letters.

[80]  David Reinhoudt,et al.  What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. , 2007, Chemical Society reviews.

[81]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[82]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[83]  Huajian Gao,et al.  The strength limit in a bio-inspired metallic nanocomposite , 2008 .

[84]  Dusan Losic,et al.  Diatomaceous Lessons in Nanotechnology and Advanced Materials , 2009 .

[85]  J. Berg,et al.  A review of the feasibility of lightening structural polymeric composites with voids without compromising mechanical properties. , 2010, Advances in colloid and interface science.

[86]  R. Ritchie,et al.  Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.

[87]  Dmitri V Talapin,et al.  Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. , 2007, Nano letters.

[88]  David J. Mooney,et al.  Inspiration and application in the evolution of biomaterials , 2009, Nature.

[89]  F. J. López-Alcaraz,et al.  Photonic Crystals from Ordered Mesoporous Thin‐Film Functional Building Blocks , 2007 .

[90]  A. Fery,et al.  Au Nanoparticle-based Multilayer Ultrathin Films with Covalently Linked Nanostructures: Spraying Layer-by-layer Assembly and Mechanical Property Characterization , 2006 .

[91]  Jian-Hua Zhu,et al.  Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. , 2010, Journal of the American Chemical Society.

[92]  Peter Fratzl,et al.  Cellulose and collagen: from fibres to tissues , 2003 .

[93]  M. Bartl,et al.  Diamond‐Structured Titania Photonic‐Bandgap Crystals from Biological Templates , 2010, Advanced materials.

[94]  K. Popat,et al.  Bone tissue engineering: A review in bone biomimetics and drug delivery strategies , 2009, Biotechnology progress.

[95]  M. Ashby,et al.  The mechanical properties of natural materials. II. Microstructures for mechanical efficiency , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[96]  Shuhong Yu,et al.  Biologically inspired, strong, transparent, and functional layered organic-inorganic hybrid films. , 2010, Angewandte Chemie.

[97]  Yongsheng Chen,et al.  Facile and Scalable Fabrication of Well‐Aligned and Closely Packed Single‐Walled Carbon Nanotube Films on Various Substrates , 2010, Advanced materials.

[98]  Hong-Yan Shi,et al.  Ordering of Disordered Nanowires: Spontaneous Formation of Highly Aligned, Ultralong Ag Nanowire Films at Oil–Water–Air Interface , 2010 .

[99]  Shaofeng Chen,et al.  Polymer‐Directed Formation of Unusual CaCO3 Pancakes with Controlled Surface Structures , 2005 .

[100]  V. Bulović,et al.  Contact printing of quantum dot light-emitting devices. , 2008, Nano letters.

[101]  F. Meldrum,et al.  Controlling mineral morphologies and structures in biological and synthetic systems. , 2008, Chemical reviews.

[102]  Vladimir V Tsukruk,et al.  Freely suspended nanocomposite membranes as highly sensitive sensors , 2004, Nature materials.

[103]  R. Reis,et al.  Designing biomaterials based on biomineralization of bone , 2010 .

[104]  Feng Hou,et al.  Continuous Multilayered Carbon Nanotube Yarns , 2010, Advanced materials.

[105]  L. Qi,et al.  Low‐Temperature Synthesis of Star‐Shaped PbS Nanocrystals in Aqueous Solutions of Mixed Cationic/Anionic Surfactants , 2006 .

[106]  Porous Semiconductor Chalcogenide Aerogels , 2005 .

[107]  Wendelin Jan Stark,et al.  Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility. , 2009, Small.

[108]  M. Oyen The Materials Science of Bone: Lessons from Nature for Biomimetic Materials Synthesis , 2008 .

[109]  X Wang,et al.  Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. , 2010, Acta biomaterialia.

[110]  J. Davies,et al.  Bone mimetics: a composite of hydroxyapatite and calcium dodecylphosphate lamellar phase , 1997 .

[111]  D. Ceperley,et al.  Self-organized silver nanoparticles for three-dimensional plasmonic crystals. , 2008, Nano letters.

[112]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[113]  Lei Jiang,et al.  Bio‐Inspired, Smart, Multiscale Interfacial Materials , 2008 .

[114]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[115]  John D. Currey,et al.  Mechanical properties of mother of pearl in tension , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[116]  S. Eichhorn,et al.  Bio‐Inspired Synthesis and Mechanical Properties of Calcite–Polymer Particle Composites , 2010, Advanced materials.

[117]  Michael F. Ashby,et al.  The mechanical efficiency of natural materials , 2004 .

[118]  João F Mano,et al.  Biomimetic design of materials and biomaterials inspired by the structure of nacre , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[119]  G. Mayer,et al.  Rigid Biological Systems as Models for Synthetic Composites , 2005, Science.

[120]  Takashi Kato Polymer/Calcium Carbonate Layered Thin‐Film Composites , 2000 .

[121]  Wei Zhou,et al.  True solutions of single-walled carbon nanotubes for assembly into macroscopic materials , 2009, Nature Nanotechnology.

[122]  Laura A. Smith,et al.  Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. , 2009, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[123]  H. Sehaqui,et al.  Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions , 2010 .

[124]  Bharat Bhushan,et al.  Biomimetics: lessons from nature–an overview , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[125]  Georg Schitter,et al.  Sacrificial bonds and hidden length: unraveling molecular mesostructures in tough materials. , 2006, Biophysical journal.

[126]  Eduardo Saiz,et al.  Freezing as a Path to Build Complex Composites , 2006, Science.

[127]  N. Kotov,et al.  Polymer/clay and polymer/carbon nanotube hybrid organic-inorganic multilayered composites made by sequential layering of nanometer scale films , 2009 .

[128]  Jialin Sun,et al.  Polyacrylamide-clay nacre-like nanocomposites prepared by electrophoretic deposition , 2007 .

[129]  Jean-Pol Vigneron,et al.  Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera). , 2005 .

[130]  Jeffrey Pyun Nanocomposite Materials from Functional Polymers and Magnetic Colloids , 2007 .

[131]  Yuya Oaki,et al.  The hierarchical architecture of nacre and its mimetic material. , 2005, Angewandte Chemie.

[132]  Peter Fratzl,et al.  Biomimetic materials research: what can we really learn from nature's structural materials? , 2007, Journal of The Royal Society Interface.

[133]  Yong Huang,et al.  An efficient biomimetic process for fabrication of artificial nacre with ordered-nanostructure , 2008 .

[134]  Clément Sanchez,et al.  Biomimetism and bioinspiration as tools for the design of innovative materials and systems , 2005, Nature materials.

[135]  Kentaro Abe,et al.  Review: current international research into cellulose nanofibres and nanocomposites , 2010, Journal of Materials Science.

[136]  Renzhi Ma,et al.  Nanosheets of Oxides and Hydroxides: Ultimate 2D Charge‐Bearing Functional Crystallites , 2010, Advances in Materials.

[137]  L. Berglund,et al.  Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. , 2010, Nature nanotechnology.

[138]  Yuval Golan,et al.  The role of interparticle and external forces in nanoparticle assembly. , 2008, Nature materials.

[139]  Marc André Meyers,et al.  Mechanical strength of abalone nacre: role of the soft organic layer. , 2008, Journal of the mechanical behavior of biomedical materials.

[140]  A. Reiterer,et al.  Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls , 1999 .

[141]  Wei-Han Huang,et al.  Electrophoretic co-deposition of biomimetic nanoplatelet–polyelectrolyte composites , 2009 .

[142]  L. Qi,et al.  Controllable self-assembly of PbS nanostars into ordered structures: close-packed arrays and patterned arrays. , 2010, ACS nano.

[143]  Zhiyong Tang,et al.  Nanostructured artificial nacre , 2003, Nature materials.

[144]  Horacio Dante Espinosa,et al.  An Experimental Investigation of Deformation and Fracture of Nacre–Mother of Pearl , 2007 .

[145]  Himadri S. Gupta,et al.  Structure and mechanical quality of the collagen–mineral nano-composite in bone , 2004 .

[146]  V. Bulović,et al.  Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. , 2009, Nano letters.

[147]  Marc A. Meyers,et al.  Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells , 2000 .

[148]  L. Brinson,et al.  High‐Nanofiller‐Content Graphene Oxide–Polymer Nanocomposites via Vacuum‐Assisted Self‐Assembly , 2010 .

[149]  F. Barthelat,et al.  On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure , 2007 .

[150]  Peter Fratzl,et al.  Biomimetics and Biotemplating of Natural Materials , 2010 .

[151]  H. Zou,et al.  Polymer/silica nanocomposites: preparation, characterization, properties, and applications. , 2008, Chemical reviews.

[152]  Andreas Walther,et al.  Supramolecular control of stiffness and strength in lightweight high-performance nacre-mimetic paper with fire-shielding properties. , 2010, Angewandte Chemie.

[153]  Min Wei,et al.  Erasable nanoporous antireflection coatings based on the reconstruction effect of layered double hydroxides. , 2010, Angewandte Chemie.

[154]  H. Sieber,et al.  Preparation of Porous Al2O3-Ceramics by Biotemplating of Wood , 2004 .

[155]  Yong Huang,et al.  Special assembly of laminated nanocomposite that mimics nacre , 2008 .

[156]  Kai Sun,et al.  Light-Controlled Self-Assembly of Semiconductor Nanoparticles into Twisted Ribbons , 2010, Science.

[157]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[158]  W. Stark,et al.  Surfactant‐Free, Melt‐Processable Metal–Polymer Hybrid Materials: Use of Graphene as a Dispersing Agent , 2008 .

[159]  Dirk Volkmer,et al.  Multilayered CaCO3/block-copolymer materials via amorphous precursor to crystal transformation , 2010 .

[160]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[161]  Younan Xia,et al.  Monodispersed Colloidal Spheres: Old Materials with New Applications , 2000 .

[162]  Anran Liu,et al.  Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films , 2010 .

[163]  Jacqueline A. Cutroni,et al.  Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture , 2005, Nature materials.

[164]  R. Ma,et al.  General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[165]  G. Mayer,et al.  New classes of tough composite materials—Lessons from natural rigid biological systems , 2006 .

[166]  Eduard Arzt,et al.  Gecko‐Inspired Surfaces: A Path to Strong and Reversible Dry Adhesives , 2010, Advanced materials.

[167]  Michael F. Ashby,et al.  The mechanical properties of natural materials. I. Material property charts , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[168]  Joanna Aizenberg,et al.  Calcitic microlenses as part of the photoreceptor system in brittlestars , 2001, Nature.

[169]  D. Tyler,et al.  Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis , 2008, Science.

[170]  Andrea R Tao,et al.  Langmuir-Blodgettry of nanocrystals and nanowires. , 2008, Accounts of chemical research.

[171]  Ludwig J. Gauckler,et al.  Bioinspired Design and Assembly of Platelet Reinforced Polymer Films , 2008, Science.

[172]  Younan Xia,et al.  Superparamagnetic Colloids: Controlled Synthesis and Niche Applications , 2007 .

[173]  Bruce P. Lee,et al.  A reversible wet/dry adhesive inspired by mussels and geckos , 2007, Nature.