Heat kernels and maximal lp—lqestimates for parabolic evolution equations

Let A be the generator of an analytic semigroup Ton L2(Ω), where Ω is a homogeneous space with doubling property. We prove maximal Lp-Lp a—priori estimates for the solution of the parabolic evolution equation u'(t)=Au(t)+f(t), u(0)=0 provided Tmay be represented by a heat—kernel satisfying certain bounds (and in particular a Gaussian bound). 1991 Mathematics Subject Classification:35K22, 58D25, 47D06

[1]  Giovanni Dore,et al.  Lp regularity for abstract differential equations , 1993 .

[2]  J. García-cuerva,et al.  Weighted norm inequalities and related topics , 1985 .

[3]  P. Clément,et al.  Abstract parabolic quasilinear equations and applications to a groundwater flow problem , 1993 .

[4]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[5]  H. Amann,et al.  Bounded $H_\infty$-calculus for elliptic operators , 1994, Differential and Integral Equations.

[6]  Giovanni Dore,et al.  On the closedness of the sum of two closed operators , 1987 .

[7]  Luciano de Simon Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine , 1964 .

[8]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[9]  D. Lamberton,et al.  Equations d'évolution linéaires associées à des semi-groupes de contractions dans les espaces LP , 1987 .

[10]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[11]  J. Prüss Evolutionary Integral Equations And Applications , 1993 .

[12]  A. Calderón,et al.  CONVOLUTION OPERATORS ON BANACH SPACE VALUED FUNCTIONS. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[13]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[14]  Derek W. Robinson,et al.  Semigroup Kernels, Poisson Bounds, and Holomorphic Functional Calculus , 1996 .

[15]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[16]  Herbert Amann,et al.  Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.

[17]  Elst ter Afm,et al.  Gaussian estimates for second order elliptic operators with boundary conditions , 1995 .

[18]  P. Sobolevskiĭ,et al.  COERCIVENESS INEQUALITIES FOR ABSTRACT PARABOLIC EQUATIONS , 1964 .

[19]  W. Wahl The Equation u′ + A(t)u = f in a Hilbert Space and LP-Estimates For Parabolic Equations , 1982 .