Modeling and Predicting Term Mismatch for Full-Text Retrieval
暂无分享,去创建一个
Yiming Yang | Jamie Callan | Thesis | Jaime Carbonell | J. Carbonell | Yiming Yang | Jamie Callan | Le Zhao | Le Zhao
[1] Matthew Cooper,et al. Reverted indexing for feedback and expansion , 2010, CIKM.
[2] Le Zhao,et al. Term necessity prediction , 2010, CIKM.
[3] Dustin Hillard,et al. Clicked phrase document expansion for sponsored search ad retrieval , 2010, SIGIR '10.
[4] W. Bruce Croft,et al. Query term ranking based on dependency parsing of verbose queries , 2010, SIGIR '10.
[5] Christopher D. Manning,et al. Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..
[6] W. Bruce Croft,et al. Learning concept importance using a weighted dependence model , 2010, WSDM '10.
[7] W. Bruce Croft,et al. Query reformulation using anchor text , 2010, WSDM '10.
[8] Donna K. Harman,et al. Overview of the Reliable Information Access Workshop , 2009, Information Retrieval.
[9] ChengXiang Zhai,et al. A comparative study of methods for estimating query language models with pseudo feedback , 2009, CIKM.
[10] Le Zhao,et al. Effective and efficient structured retrieval , 2009, CIKM.
[11] Fabio Sartori. A Comparison of Methods and Techniques for Ontological Query Expansion , 2009, MTSR.
[12] Vitor R. Carvalho,et al. Reducing long queries using query quality predictors , 2009, SIGIR.
[13] W. Bruce Croft,et al. A Probabilistic Retrieval Model for Semistructured Data , 2009, ECIR.
[14] James Allan,et al. Regression Rank: Learning to Meet the Opportunity of Descriptive Queries , 2009, ECIR.
[15] W. Bruce Croft,et al. Analysis of long queries in a large scale search log , 2009, WSCD '09.
[16] Comparison of Classifiers , 2009 .
[17] Yue Lu,et al. An empirical study of gene synonym query expansion in biomedical information retrieval , 2008, Information Retrieval.
[18] Ellen M. Voorhees,et al. TREC genomics special issue overview , 2009, Information Retrieval.
[19] Matthew Lease. Incorporating relevance and psuedo-relevance feedback in the markov random field model: Brown at the TREC'08 relevance feedback track , 2008 .
[20] Matthew Lease. Incorporating Relevance and Pseudo-relevance Feedback in the Markov Random Field Model , 2008, TREC.
[21] ChengXiang Zhai,et al. Mining term association patterns from search logs for effective query reformulation , 2008, CIKM '08.
[22] Donald Metzler,et al. Generalized inverse document frequency , 2008, CIKM '08.
[23] W. Bruce Croft,et al. Discovering key concepts in verbose queries , 2008, SIGIR '08.
[24] Stephen E. Robertson,et al. Selecting Query Term Alternations for Web Search by Exploiting Query Contexts , 2008, ACL.
[25] Kevyn Collins-Thompson,et al. Robust model estimation methods for information retrieval , 2008 .
[26] James Allan,et al. A comparison of statistical significance tests for information retrieval evaluation , 2007, CIKM '07.
[27] Xiaoying Gao,et al. Exploiting underrepresented query aspects for automatic query expansion , 2007, KDD '07.
[28] James P. Callan,et al. Structured retrieval for question answering , 2007, SIGIR.
[29] Xin Li,et al. Context sensitive stemming for web search , 2007, SIGIR.
[30] ChengXiang Zhai,et al. A study of Poisson query generation model for information retrieval , 2007, SIGIR.
[31] P. Smith,et al. A review of ontology based query expansion , 2007, Inf. Process. Manag..
[32] Douglas W. Oard,et al. Overview of the TREC 2007 Legal Track , 2007, TREC.
[33] Le Zhao,et al. Stuctured Queries for Legal Search , 2007, TREC.
[34] Tao Qin,et al. LETOR: Benchmark Dataset for Research on Learning to Rank for Information Retrieval , 2007 .
[35] Andrei Z. Broder,et al. Effective and efficient classification on a search-engine model , 2007, Knowledge and Information Systems.
[36] Elad Yom-Tov,et al. What makes a query difficult? , 2006, SIGIR.
[37] Andrew Trotman,et al. Why structural hints in queries do not help XML-retrieval , 2006, SIGIR.
[38] Benjamin Rey,et al. Generating query substitutions , 2006, WWW '06.
[39] Marc Eisenstadt,et al. Exploiting Semantic Association To Answer 'Vague Queries' , 2006, AMT.
[40] Douglas W. Oard,et al. TREC 2006 Legal Track Overview , 2006, TREC.
[41] Koby Crammer,et al. Online Large-Margin Training of Dependency Parsers , 2005, ACL.
[42] Zhenyu Liu,et al. Knowledge-based query expansion to support scenario-specific retrieval of medical free text , 2005, SAC '05.
[43] D. Losada. Language modeling for sentence retrieval : A comparison between Multiple-Bernoulli models and Multinomial models , 2005 .
[44] W. Bruce Croft,et al. Indri : A language-model based search engine for complex queries ( extended version ) , 2005 .
[45] W. Bruce Croft,et al. Formal multiple-bernoulli models for language modeling , 2004, SIGIR '04.
[46] Hugh E. Williams,et al. Query association surrogates for Web search: Research Articles , 2004 .
[47] W. Bruce Croft,et al. Indri at TREC 2004: Terabyte Track , 2004, TREC.
[48] Harvey Starr,et al. Necessary conditions : theory, methodology, and applications , 2003 .
[49] Thorsten Brants,et al. Natural Language Processing in Information Retrieval , 2003, CLIN.
[50] Kotagiri Ramamohanarao,et al. Long-Term Learning for Web Search Engines , 2002, PKDD.
[51] W. Bruce Croft,et al. Predicting query performance , 2002, SIGIR '02.
[52] William M. Pottenger,et al. Detecting Patterns in the LSI Term-Term Matrix , 2002 .
[53] W. Bruce Croft,et al. Relevance-Based Language Models , 2001, SIGIR '01.
[54] Danqi Chen,et al. of the Association for Computational Linguistics: , 2001 .
[55] John D. Lafferty,et al. A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.
[56] Stephen J. Green,et al. Linguistic Knowledge can Improve Information Retrieval , 2000, ANLP.
[57] Robert Krovetz,et al. Viewing morphology as an inference process , 1993, Artif. Intell..
[58] Alan F. Smeaton,et al. Using NLP or NLP Resources for Information Retrieval Tasks , 1999 .
[59] Eugene Charniak,et al. Determining the specificity of nouns from text , 1999, EMNLP.
[60] Chris Buckley,et al. Improving automatic query expansion , 1998, SIGIR '98.
[61] Loanne Snavely,et al. Designs for Active Learning: A Sourcebook of Classroom Strategies for Information Education. , 1998 .
[62] Jon M. Kleinberg,et al. Automatic Resource Compilation by Analyzing Hyperlink Structure and Associated Text , 1998, Comput. Networks.
[63] W. R. Grei,et al. A theory of term weighting based on exploratory data analysis , 1998, SIGIR 1998.
[64] Samuel S. L. To,et al. Passage-Based Re nement ( MultiText Experiments for TREC-6 ) , 1998 .
[65] W. Bruce Croft,et al. A language modeling approach to information retrieval , 1998, SIGIR '98.
[66] Marti A. Hearst. Improving Full-Text Precision on Short Queries using Simple Constraints , 1996 .
[67] W. Bruce Croft,et al. Query expansion using local and global document analysis , 1996, SIGIR '96.
[68] James Allan,et al. Recent Experiments with INQUERY , 1995, TREC.
[69] Hinrich Schütze,et al. A comparison of classifiers and document representations for the routing problem , 1995, SIGIR '95.
[70] Stephen E. Robertson,et al. Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval , 1994, SIGIR '94.
[71] Ellen M. Voorhees,et al. Query expansion using lexical-semantic relations , 1994, SIGIR '94.
[72] Fredric C. Gey,et al. Inferring probability of relevance using the method of logistic regression , 1994, SIGIR '94.
[73] Stephen E. Robertson,et al. GatfordCentre for Interactive Systems ResearchDepartment of Information , 1996 .
[74] Jati K. Sengupta,et al. Introduction to Information , 1993 .
[75] Fredric C. Gey,et al. Probabilistic retrieval based on staged logistic regression , 1992, SIGIR '92.
[76] W. Bruce Croft,et al. The INQUERY Retrieval System , 1992, DEXA.
[77] Chris Buckley,et al. A probabilistic learning approach for document indexing , 1991, TOIS.
[78] Alan F. Smeaton,et al. Natural language processing and information retrieval , 1990, Inf. Process. Manag..
[79] W. Bruce Croft,et al. Inference networks for document retrieval , 1989, SIGIR '90.
[80] W. Bruce Croft,et al. An approach to natural language for document retrieval , 1987, SIGIR '87.
[81] Susan T. Dumais,et al. The vocabulary problem in human-system communication , 1987, CACM.
[82] Bert R. Boyce,et al. Online information retrieval concepts, principles, and techniques , 1987, J. Am. Soc. Inf. Sci..
[83] C. Edwards,et al. Information Technology and the Law , 1986 .
[84] P. Bryan Heidorn,et al. Dependency Parsing for Information Retrieval , 1984, SIGIR.
[85] Martin F. Porter,et al. An algorithm for suffix stripping , 1997, Program.
[86] W. Bruce Croft,et al. Using Probabilistic Models of Document Retrieval without Relevance Information , 1979, J. Documentation.
[87] Stephen E. Robertson,et al. Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..
[88] J. J. Rocchio,et al. Relevance feedback in information retrieval , 1971 .
[89] F. W. Lancaster,et al. Information retrieval systems; characteristics, testing, and evaluation , 1968 .
[90] D. R. Lewis. British Computer Society , 1957, Nature.