Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA
暂无分享,去创建一个
[1] M. Zeng. Differential equations on unitarity cut surfaces , 2017, 1702.02355.
[2] A. V. Smirnov,et al. FIRE4, LiteRed and accompanying tools to solve integration by parts relations , 2013, Comput. Phys. Commun..
[3] C. Studerus,et al. Reduze - Feynman integral reduction in C++ , 2009, Comput. Phys. Commun..
[4] S. Weinzierl,et al. The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case , 2015, 1504.03255.
[5] R. Bonciani,et al. Next-to-leading order QCD corrections to the decay width H → Zγ , 2015, Journal of High Energy Physics.
[6] M. Steinhauser,et al. A planar four-loop form factor and cusp anomalous dimension in QCD , 2016, 1604.03126.
[7] K. Melnikov,et al. Two-loop electroweak corrections to Higgs–gluon couplings to higher orders in the dimensional regularization parameter , 2016, 1610.05497.
[8] Ye Li,et al. N$^3$LO Higgs boson and Drell-Yan production at threshold: The one-loop two-emission contribution , 2014, 1404.5839.
[9] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[10] W. Kilgore,et al. Exact N$^3$LO results for $q q^\prime\to H +X$ , 2015, 1506.02674.
[11] Kuo-Tsai Chen,et al. Iterated path integrals , 1977 .
[12] R. Lee. Reducing differential equations for multiloop master integrals , 2014, 1411.0911.
[13] T. Huber,et al. Four-Loop Nonplanar Cusp Anomalous Dimension in N=4 Supersymmetric Yang-Mills Theory. , 2017, Physical review letters.
[14] R. N. Lee. LiteRed 1.4: a powerful tool for reduction of multiloop integrals , 2013, 1310.1145.
[15] T. Gehrmann,et al. The two-loop master integrals for $ q\overline{q} $ → VV , 2014, 1404.4853.
[16] C. Anastasiou,et al. Automatic integral reduction for higher order perturbative calculations , 2004 .
[17] F. Tkachov. A theorem on analytical calculability of 4-loop renormalization group functions , 1981 .
[19] R. N. Lee. Presenting LiteRed: a tool for the Loop InTEgrals REDuction , 2012, 1212.2685.
[20] C. Papadopoulos,et al. Cuts of Feynman Integrals in Baikov representation , 2017, Journal of High Energy Physics.
[21] J. Henn. Multiloop integrals in dimensional regularization made simple. , 2013, Physical review letters.
[22] T. Huber,et al. The four-loop non-planar cusp anomalous dimension in N = 4 SYM , 2017 .
[23] Mario Prausa,et al. epsilon : A tool to find a canonical basis of master integrals , 2017, Comput. Phys. Commun..
[24] B. M. Fulk. MATH , 1992 .
[25] A. Kotikov. Differential equations method. New technique for massive Feynman diagram calculation , 1991 .
[26] M. Steinhauser,et al. The $n_f^2$ contributions to fermionic four-loop form factors , 2017, 1705.06862.
[27] P. Marquard,et al. The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions , 2015, 1510.07803.
[28] V. Smirnov,et al. Analytic results for two-loop master integrals for Bhabha scattering I , 2013, 1307.4083.
[29] L. Tancredi,et al. On the maximal cut of Feynman integrals and the solution of their differential equations , 2016, 1610.08397.
[30] E. Remiddi,et al. Analytic treatment of the two loop equal mass sunrise graph , 2004, hep-ph/0406160.
[31] S. Laporta,et al. difference equations , 2001 .
[32] J. Henn. Lectures on differential equations for Feynman integrals , 2014, 1412.2296.
[33] Yang Zhang,et al. Azurite : An algebraic geometry based package for finding bases of loop integrals , 2016, Comput. Phys. Commun..
[34] A. Smirnov,et al. Evaluating single-scale and/or non-planar diagrams by differential equations , 2013, 1312.2588.
[35] C. Meyer. Transforming differential equations of multi-loop Feynman integrals into canonical form , 2016, 1611.01087.
[36] P. Vanhove,et al. The elliptic dilogarithm for the sunset graph , 2013, 1309.5865.
[37] P. Vanhove,et al. Local mirror symmetry and the sunset Feynman integral , 2016, 1601.08181.
[38] K. Melnikov,et al. Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions , 2014 .
[39] S. Weinzierl,et al. Feynman integrals and iterated integrals of modular forms , 2017, 1704.08895.
[40] L. Tancredi,et al. Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph , 2017, 1704.05465.
[41] K. Melnikov,et al. Non-planar master integrals for the production of two off-shell vector bosons in collisions of massless partons , 2014, 1404.5590.
[42] P. Vanhove,et al. A Feynman integral via higher normal functions , 2014, Compositio Mathematica.
[43] A. V. Smirnov,et al. FIRE5: A C++ implementation of Feynman Integral REduction , 2014, Comput. Phys. Commun..
[44] P. Mastrolia,et al. Two-loop master integrals for the leading QCD corrections to the Higgs coupling to a W pair and to the triple gauge couplings ZW W and γ∗W W , 2017, 1702.07331.
[45] A. Smirnov,et al. Analytic results for planar three-loop integrals for massive form factors , 2016, 1611.06523.
[46] T. Huber,et al. Two-loop master integrals for non-leptonic heavy-to-heavy decays , 2015, 1503.00735.
[47] S. Weinzierl,et al. Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms. , 2017, Physical review letters.
[48] T. Ueda,et al. Adequate bases of phase space master integrals for gg → h at NNLO and beyond , 2014, Journal of High Energy Physics.
[49] A. von Manteuffel,et al. Reduze 2 - Distributed Feynman Integral Reduction , 2012, 1201.4330.
[50] R. Bonciani,et al. Two-loop master integrals for the mixed EW-QCD virtual corrections to Drell-Yan scattering , 2016, 1604.08581.
[51] A. Goncharov,et al. Multiple polylogarithms, cyclotomy and modular complexes , 2011, 1105.2076.
[52] Differential equations for Feynman graph amplitudes , 1997, hep-th/9711188.
[53] W. Kilgore,et al. Exact N3LO results for qq′ → H + X , 2015 .
[54] M. Dorigo,et al. Observation of the $B^{0}_{s}\rightarrow J/\psi K_{{\rm S}}^{0} K^{\pm} \pi^{\mp}$ decay , 2014, 1405.3219.
[55] S. Weinzierl,et al. The kite integral to all orders in terms of elliptic polylogarithms , 2016, 1607.01571.
[56] R. Schabinger,et al. Baikov-Lee representations of cut Feynman integrals , 2017, 1705.03478.
[57] E. Remiddi,et al. Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral , 2016, 1602.01481.
[58] Oleksandr Gituliar,et al. Fuchsia : A tool for reducing differential equations for Feynman master integrals to epsilon form , 2017, Comput. Phys. Commun..
[59] H. Czyz,et al. The Master differential equations for the two loop sunrise selfmass amplitudes , 1998, hep-th/9805118.
[60] O. Gituliar. Master integrals for splitting functions from differential equations in QCD , 2015, 1607.00759.
[61] M. Steinhauser,et al. Four-loop photon quark form factor and cusp anomalous dimension in the large-Nc limit of QCD , 2016, 1612.04389.
[62] F. Tkachov,et al. Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .
[63] Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.
[64] G. Bell,et al. Master integrals for the two-loop penguin contribution in non-leptonic B-decays , 2014, 1410.2804.
[65] Yang Zhang,et al. Maximal cuts in arbitrary dimension , 2017, Journal of High Energy Physics.
[66] A. Smirnov,et al. Analytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equation , 2013, 1306.2799.
[67] S. Caron-Huot,et al. Iterative structure of finite loop integrals , 2014, Journal of High Energy Physics.
[68] T. Gehrmann,et al. The rare decay H → Zγ in perturbative QCD , 2015 .
[69] T. Hussain,et al. Measurement of Ds+ production and nuclear modification factor in Pb-Pb collisions at sNN=2.76$$ \sqrt{{\mathrm{s}}_{\mathrm{NN}}}=2.76 $$ TeV , 2016 .
[70] T. Gehrmann,et al. Analytic Form of the Two-Loop Planar Five-Gluon All-Plus-Helicity Amplitude in QCD. , 2015, Physical review letters.
[71] P. Mastrolia,et al. Three-loop master integrals for ladder-box diagrams with one massive leg , 2014, 1408.3107.
[72] Hua Xing Zhu,et al. The two-loop soft function for heavy quark pair production at future linear colliders , 2014, 1408.5134.
[73] E. Remiddi. Differential Equations and Dispersion Relations for Feynman Amplitudes , 2019 .
[74] P. Mastrolia,et al. Magnus and Dyson series for Master Integrals , 2014, 1401.2979.
[75] P. Marquard,et al. Three loop cusp anomalous dimension in QCD. , 2014, Physical review letters.
[76] O. Gituliar. Master integrals for splitting functions from differential equations in QCD , 2015, 1512.02045.
[77] T. Gehrmann,et al. The rare decay $H\to Z\gamma$ in perturbative QCD , 2015, 1505.00561.
[78] A. Raichev. Leinartas's partial fraction decomposition , 2012, 1206.4740.
[79] Peter Uwer,et al. Kira - A Feynman integral reduction program , 2017, Comput. Phys. Commun..
[80] R. Bonciani,et al. Two-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependence , 2016, 1609.06685.
[81] K. J. Larsen,et al. Integration-by-parts reductions from unitarity cuts and algebraic geometry , 2015, 1511.01071.
[82] S. Weinzierl,et al. The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms , 2014, 1405.5640.
[83] Roman N. Lee,et al. Evaluating the last missing ingredient for the three-loop quark static potential by differential equations , 2016, 1608.02605.
[84] V. Smirnov,et al. Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations , 2016, 1607.06427.