Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA

Abstract The integration of differential equations of Feynman integrals can be greatly facilitated by using a canonical basis . This paper presents the Mathematica package CANONICA , which implements a recently developed algorithm to automatize the transformation to a canonical basis. This represents the first publicly available implementation suitable for differential equations depending on multiple scales. In addition to the presentation of the package, this paper extends the description of some aspects of the algorithm, including a proof of the uniqueness of canonical forms up to constant transformations. Program summary Program Title: CANONICA Program Files doi: http://dx.doi.org/10.17632/fmwnmmhn77.1 Licensing provisions: GNU General Public License version 3 Programming language: Wolfram Mathematica, version 10 or higher Nature of problem: Computation of a rational basis transformation of master integrals leading to a canonical form of the corresponding differential equation. Solution method: The transformation law is expanded in the dimensional regulator. The resulting differential equations for the expansion coefficients of the transformation are solved with a rational ansatz.

[1]  M. Zeng Differential equations on unitarity cut surfaces , 2017, 1702.02355.

[2]  A. V. Smirnov,et al.  FIRE4, LiteRed and accompanying tools to solve integration by parts relations , 2013, Comput. Phys. Commun..

[3]  C. Studerus,et al.  Reduze - Feynman integral reduction in C++ , 2009, Comput. Phys. Commun..

[4]  S. Weinzierl,et al.  The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case , 2015, 1504.03255.

[5]  R. Bonciani,et al.  Next-to-leading order QCD corrections to the decay width H → Zγ , 2015, Journal of High Energy Physics.

[6]  M. Steinhauser,et al.  A planar four-loop form factor and cusp anomalous dimension in QCD , 2016, 1604.03126.

[7]  K. Melnikov,et al.  Two-loop electroweak corrections to Higgs–gluon couplings to higher orders in the dimensional regularization parameter , 2016, 1610.05497.

[8]  Ye Li,et al.  N$^3$LO Higgs boson and Drell-Yan production at threshold: The one-loop two-emission contribution , 2014, 1404.5839.

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  W. Kilgore,et al.  Exact N$^3$LO results for $q q^\prime\to H +X$ , 2015, 1506.02674.

[11]  Kuo-Tsai Chen,et al.  Iterated path integrals , 1977 .

[12]  R. Lee Reducing differential equations for multiloop master integrals , 2014, 1411.0911.

[13]  T. Huber,et al.  Four-Loop Nonplanar Cusp Anomalous Dimension in N=4 Supersymmetric Yang-Mills Theory. , 2017, Physical review letters.

[14]  R. N. Lee LiteRed 1.4: a powerful tool for reduction of multiloop integrals , 2013, 1310.1145.

[15]  T. Gehrmann,et al.  The two-loop master integrals for $ q\overline{q} $ → VV , 2014, 1404.4853.

[16]  C. Anastasiou,et al.  Automatic integral reduction for higher order perturbative calculations , 2004 .

[17]  F. Tkachov A theorem on analytical calculability of 4-loop renormalization group functions , 1981 .

[19]  R. N. Lee Presenting LiteRed: a tool for the Loop InTEgrals REDuction , 2012, 1212.2685.

[20]  C. Papadopoulos,et al.  Cuts of Feynman Integrals in Baikov representation , 2017, Journal of High Energy Physics.

[21]  J. Henn Multiloop integrals in dimensional regularization made simple. , 2013, Physical review letters.

[22]  T. Huber,et al.  The four-loop non-planar cusp anomalous dimension in N = 4 SYM , 2017 .

[23]  Mario Prausa,et al.  epsilon : A tool to find a canonical basis of master integrals , 2017, Comput. Phys. Commun..

[24]  B. M. Fulk MATH , 1992 .

[25]  A. Kotikov Differential equations method. New technique for massive Feynman diagram calculation , 1991 .

[26]  M. Steinhauser,et al.  The $n_f^2$ contributions to fermionic four-loop form factors , 2017, 1705.06862.

[27]  P. Marquard,et al.  The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions , 2015, 1510.07803.

[28]  V. Smirnov,et al.  Analytic results for two-loop master integrals for Bhabha scattering I , 2013, 1307.4083.

[29]  L. Tancredi,et al.  On the maximal cut of Feynman integrals and the solution of their differential equations , 2016, 1610.08397.

[30]  E. Remiddi,et al.  Analytic treatment of the two loop equal mass sunrise graph , 2004, hep-ph/0406160.

[31]  S. Laporta,et al.  difference equations , 2001 .

[32]  J. Henn Lectures on differential equations for Feynman integrals , 2014, 1412.2296.

[33]  Yang Zhang,et al.  Azurite : An algebraic geometry based package for finding bases of loop integrals , 2016, Comput. Phys. Commun..

[34]  A. Smirnov,et al.  Evaluating single-scale and/or non-planar diagrams by differential equations , 2013, 1312.2588.

[35]  C. Meyer Transforming differential equations of multi-loop Feynman integrals into canonical form , 2016, 1611.01087.

[36]  P. Vanhove,et al.  The elliptic dilogarithm for the sunset graph , 2013, 1309.5865.

[37]  P. Vanhove,et al.  Local mirror symmetry and the sunset Feynman integral , 2016, 1601.08181.

[38]  K. Melnikov,et al.  Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions , 2014 .

[39]  S. Weinzierl,et al.  Feynman integrals and iterated integrals of modular forms , 2017, 1704.08895.

[40]  L. Tancredi,et al.  Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph , 2017, 1704.05465.

[41]  K. Melnikov,et al.  Non-planar master integrals for the production of two off-shell vector bosons in collisions of massless partons , 2014, 1404.5590.

[42]  P. Vanhove,et al.  A Feynman integral via higher normal functions , 2014, Compositio Mathematica.

[43]  A. V. Smirnov,et al.  FIRE5: A C++ implementation of Feynman Integral REduction , 2014, Comput. Phys. Commun..

[44]  P. Mastrolia,et al.  Two-loop master integrals for the leading QCD corrections to the Higgs coupling to a W pair and to the triple gauge couplings ZW W and γ∗W W , 2017, 1702.07331.

[45]  A. Smirnov,et al.  Analytic results for planar three-loop integrals for massive form factors , 2016, 1611.06523.

[46]  T. Huber,et al.  Two-loop master integrals for non-leptonic heavy-to-heavy decays , 2015, 1503.00735.

[47]  S. Weinzierl,et al.  Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms. , 2017, Physical review letters.

[48]  T. Ueda,et al.  Adequate bases of phase space master integrals for gg → h at NNLO and beyond , 2014, Journal of High Energy Physics.

[49]  A. von Manteuffel,et al.  Reduze 2 - Distributed Feynman Integral Reduction , 2012, 1201.4330.

[50]  R. Bonciani,et al.  Two-loop master integrals for the mixed EW-QCD virtual corrections to Drell-Yan scattering , 2016, 1604.08581.

[51]  A. Goncharov,et al.  Multiple polylogarithms, cyclotomy and modular complexes , 2011, 1105.2076.

[52]  Differential equations for Feynman graph amplitudes , 1997, hep-th/9711188.

[53]  W. Kilgore,et al.  Exact N3LO results for qq′ → H + X , 2015 .

[54]  M. Dorigo,et al.  Observation of the $B^{0}_{s}\rightarrow J/\psi K_{{\rm S}}^{0} K^{\pm} \pi^{\mp}$ decay , 2014, 1405.3219.

[55]  S. Weinzierl,et al.  The kite integral to all orders in terms of elliptic polylogarithms , 2016, 1607.01571.

[56]  R. Schabinger,et al.  Baikov-Lee representations of cut Feynman integrals , 2017, 1705.03478.

[57]  E. Remiddi,et al.  Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral , 2016, 1602.01481.

[58]  Oleksandr Gituliar,et al.  Fuchsia : A tool for reducing differential equations for Feynman master integrals to epsilon form , 2017, Comput. Phys. Commun..

[59]  H. Czyz,et al.  The Master differential equations for the two loop sunrise selfmass amplitudes , 1998, hep-th/9805118.

[60]  O. Gituliar Master integrals for splitting functions from differential equations in QCD , 2015, 1607.00759.

[61]  M. Steinhauser,et al.  Four-loop photon quark form factor and cusp anomalous dimension in the large-Nc limit of QCD , 2016, 1612.04389.

[62]  F. Tkachov,et al.  Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .

[63]  Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.

[64]  G. Bell,et al.  Master integrals for the two-loop penguin contribution in non-leptonic B-decays , 2014, 1410.2804.

[65]  Yang Zhang,et al.  Maximal cuts in arbitrary dimension , 2017, Journal of High Energy Physics.

[66]  A. Smirnov,et al.  Analytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equation , 2013, 1306.2799.

[67]  S. Caron-Huot,et al.  Iterative structure of finite loop integrals , 2014, Journal of High Energy Physics.

[68]  T. Gehrmann,et al.  The rare decay H → Zγ in perturbative QCD , 2015 .

[69]  T. Hussain,et al.  Measurement of Ds+ production and nuclear modification factor in Pb-Pb collisions at sNN=2.76$$ \sqrt{{\mathrm{s}}_{\mathrm{NN}}}=2.76 $$ TeV , 2016 .

[70]  T. Gehrmann,et al.  Analytic Form of the Two-Loop Planar Five-Gluon All-Plus-Helicity Amplitude in QCD. , 2015, Physical review letters.

[71]  P. Mastrolia,et al.  Three-loop master integrals for ladder-box diagrams with one massive leg , 2014, 1408.3107.

[72]  Hua Xing Zhu,et al.  The two-loop soft function for heavy quark pair production at future linear colliders , 2014, 1408.5134.

[73]  E. Remiddi Differential Equations and Dispersion Relations for Feynman Amplitudes , 2019 .

[74]  P. Mastrolia,et al.  Magnus and Dyson series for Master Integrals , 2014, 1401.2979.

[75]  P. Marquard,et al.  Three loop cusp anomalous dimension in QCD. , 2014, Physical review letters.

[76]  O. Gituliar Master integrals for splitting functions from differential equations in QCD , 2015, 1512.02045.

[77]  T. Gehrmann,et al.  The rare decay $H\to Z\gamma$ in perturbative QCD , 2015, 1505.00561.

[78]  A. Raichev Leinartas's partial fraction decomposition , 2012, 1206.4740.

[79]  Peter Uwer,et al.  Kira - A Feynman integral reduction program , 2017, Comput. Phys. Commun..

[80]  R. Bonciani,et al.  Two-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependence , 2016, 1609.06685.

[81]  K. J. Larsen,et al.  Integration-by-parts reductions from unitarity cuts and algebraic geometry , 2015, 1511.01071.

[82]  S. Weinzierl,et al.  The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms , 2014, 1405.5640.

[83]  Roman N. Lee,et al.  Evaluating the last missing ingredient for the three-loop quark static potential by differential equations , 2016, 1608.02605.

[84]  V. Smirnov,et al.  Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations , 2016, 1607.06427.