DISSECTING GALAXY FORMATION MODELS WITH SENSITIVITY ANALYSIS—A NEW APPROACH TO CONSTRAIN THE MILKY WAY FORMATION HISTORY

We present an application of a statistical tool known as sensitivity analysis to characterize the relationship between input parameters and observational predictions of semi-analytic models of galaxy formation coupled to cosmological N-body simulations. We show how a sensitivity analysis can be performed on our chemo-dynamical model, ChemTreeN, to characterize and quantify its relationship between model input parameters and predicted observable properties. The result of this analysis provides the user with information about which parameters are most important and most likely to affect the prediction of a given observable. It can also be used to simplify models by identifying input parameters that have no effect on the outputs (i.e., observational predictions) of interest. Conversely, sensitivity analysis allows us to identify what model parameters can be most efficiently constrained by the given observational data set. We have applied this technique to real observational data sets associated with the Milky Way, such as the luminosity function of the dwarf satellites. The results from the sensitivity analysis are used to train specific model emulators of ChemTreeN, only involving the most relevant input parameters. This allowed us to efficiently explore the input parameter space. A statistical comparison of model outputs and real observables is used to obtain a "best-fitting" parameter set. We consider different Milky-Way-like dark matter halos to account for the dependence of the best-fitting parameter selection process on the underlying merger history of the models. For all formation histories considered, running ChemTreeN with best-fitting parameters produced luminosity functions that tightly fit their observed counterpart. However, only one of the resulting stellar halo models was able to reproduce the observed stellar halo mass within 40 kpc of the Galactic center. On the basis of this analysis, it is possible to disregard certain models, and their corresponding merger histories, as good representations of the underlying merger history of the Milky Way.

[1]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[2]  B. Gibson,et al.  The Wobbly Galaxy : kinematics north and south with RAVE red-clump giants , 2013, 1302.2468.

[3]  R. Wechsler,et al.  THE IMPACT OF INHOMOGENEOUS REIONIZATION ON THE SATELLITE GALAXY POPULATION OF THE MILKY WAY , 2009, 0901.3553.

[4]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[5]  M. Irwin,et al.  The remnants of galaxy formation from a panoramic survey of the region around M31 , 2009, Nature.

[6]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[7]  T. Beers,et al.  Stellar haloes in Milky Way mass galaxies: from the inner to the outer haloes , 2013, 1309.3609.

[8]  Ž. Ivezić,et al.  STRUCTURE AND KINEMATICS OF THE STELLAR HALOS AND THICK DISKS OF THE MILKY WAY BASED ON CALIBRATION STARS FROM SLOAN DIGITAL SKY SURVEY DR7 , 2009, 0909.3019.

[9]  Michael Kuhlen,et al.  Early Supersymmetric Cold Dark Matter Substructure , 2006 .

[10]  U. Munari,et al.  The radial velocity experiment (RAVE): First data release , 2006 .

[11]  Mamoru Doi,et al.  The Milky Way Tomography with SDSS. II. Stellar Metallicity , 2008, 0804.3850.

[12]  Cambridge,et al.  The Luminosity Function of the Milky Way Satellites , 2007, 0706.2687.

[13]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[14]  B. Gibson,et al.  The RAVE survey : the Galactic escape speed and the mass of the Milky Way , 2013, 1309.4293.

[15]  R. Beaton,et al.  GLOBAL PROPERTIES OF M31'S STELLAR HALO FROM THE SPLASH SURVEY. I. SURFACE BRIGHTNESS PROFILE , 2012, 1210.3362.

[16]  Jason Tumlinson,et al.  CHARACTERIZING THE FORMATION HISTORY OF MILKY WAY LIKE STELLAR HALOS WITH MODEL EMULATORS , 2012, 1209.2142.

[17]  Tucson,et al.  Stellar haloes of simulated Milky-Way-like galaxies: Chemical and kinematic properties , 2013, 1301.1301.

[18]  Coryn A. L. Bailer-Jones,et al.  Two stellar components in the halo of the Milky Way , 2008, Nature.

[19]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[20]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[21]  L. Girardi,et al.  Theoretical isochrones in several photometric systems I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Washington, and ESO Imaging Survey filter sets , 2002, astro-ph/0205080.

[22]  B. Willman,et al.  Hundreds of Milky Way Satellites? Luminosity Bias in the Satellite Luminosity Function , 2008, 0806.4381.

[23]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[24]  Zeljko Ivezic,et al.  The Accretion Origin of the Milky Way’s Stellar Halo , 2007, 0706.0004.

[25]  Halos of spiral galaxies. III. Metallicity distributions , 2005, astro-ph/0510255.

[26]  Jason Tumlinson Chemical Evolution in Hierarchical Models of Cosmic Structure. I. Constraints on the Early Stellar Initial Mass Function , 2006 .

[27]  Claudio Dalla Vecchia,et al.  Cosmological simulations of the formation of the stellar haloes around disc galaxies , 2011, 1102.2526.

[28]  N. Tominaga ASPHERICAL PROPERTIES OF HYDRODYNAMICS AND NUCLEOSYNTHESIS IN JET-INDUCED SUPERNOVAE , 2007, 0711.4815.

[29]  M. G. Lattanzi,et al.  GAIA: Composition, formation and evolution of the Galaxy , 2001, astro-ph/0101235.

[30]  A. Helmi,et al.  The satellites of the Milky Way – insights from semi-analytic modelling in a ΛCDM cosmology , 2012, 1206.0020.

[31]  Cambridge,et al.  Luminosity function and radial distribution of Milky Way satellites in a ΛCDM Universe , 2009, 0903.4681.

[32]  M. Boylan-Kolchin,et al.  THE SPACE MOTION OF LEO I: THE MASS OF THE MILKY WAY'S DARK MATTER HALO , 2012, 1210.6046.

[33]  William A. Link,et al.  On thinning of chains in MCMC , 2012 .

[34]  J. Bailin,et al.  THE GHOSTS SURVEY. I. HUBBLE SPACE TELESCOPE ADVANCED CAMERA FOR SURVEYS DATA , 2011 .

[35]  B. Willman,et al.  The observed and predicted spatial distribution of Milky Way satellite galaxies , 2004 .

[36]  Z. Ivezic,et al.  THE MILKY WAY TOMOGRAPHY WITH SDSS. III. STELLAR KINEMATICS , 2009, 0909.0013.

[37]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[38]  Fnal,et al.  The Field of Streams: Sagittarius and its Siblings , 2006, astro-ph/0605025.

[39]  J. Bailin,et al.  TESTING GALAXY FORMATION MODELS WITH THE GHOSTS SURVEY: THE COLOR PROFILE OF M81's STELLAR HALO , 2013, 1302.2626.

[40]  Mathematics,et al.  The Parameter Space of Galaxy Formation , 2010, 1004.0711.

[41]  William J. Welch,et al.  Screening the Input Variables to a Computer Model Via Analysis of Variance and Visualization , 2006 .

[42]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[43]  Eric D. Smith,et al.  Sensitivity Analysis, a Powerful System Validation Technique , 2007 .

[44]  J. Simon,et al.  MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. III. METALLICITY DISTRIBUTIONS OF MILKY WAY DWARF SATELLITE GALAXIES , 2010, 1011.4937.

[45]  Kathryn V. Johnston,et al.  Tracing Galaxy Formation with Stellar Halos. I. Methods , 2005 .

[46]  A. OHagan,et al.  Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[47]  N. Katz,et al.  Bayesian inference of galaxy formation from the K‐band luminosity function of galaxies: tensions between theory and observation , 2011, 1109.6658.

[48]  D. Weinberg,et al.  Reionization and the Abundance of Galactic Satellites , 2000, astro-ph/0002214.

[49]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[50]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[51]  B. Yanny,et al.  Cats and dogs, hair and a hero: A quintet of new milky way companions , 2006 .

[52]  University of British Columbia,et al.  Feedback and the fundamental line of low-luminosity low-surface-brightness/dwarf galaxies , 2002, astro-ph/0210454.

[53]  J. Norris,et al.  Metal-Poor Stars and the Chemical Enrichment of the Universe , 2011, 1102.1748.

[54]  B. Yanny,et al.  GALACTOSEISMOLOGY: DISCOVERY OF VERTICAL WAVES IN THE GALACTIC DISK , 2012, 1203.6861.

[55]  T. Beers,et al.  Signatures of minor mergers in the Milky Way disc – I. The SEGUE stellar sample , 2012, 1201.5898.

[56]  Brant Robertson,et al.  Chemical Abundance Distributions of Galactic Halos and Their Satellite Systems in a ΛCDM Universe , 2006 .

[57]  Warren R. Brown,et al.  THE MASS PROFILE OF THE GALAXY TO 80 kpc , 2010, 1005.2619.

[58]  E. K. Grebel,et al.  Theoretical isochrones in several photometric systems. II. The Sloan Digital Sky Survey ugriz system , 2004 .

[59]  C. Alcock,et al.  THIRD-EPOCH MAGELLANIC CLOUD PROPER MOTIONS. I. HUBBLE SPACE TELESCOPE/WFC3 DATA AND ORBIT IMPLICATIONS , 2013, 1301.0832.

[60]  A. Benson Galacticus: A Semi-Analytic Model of Galaxy Formation , 2010, 1008.1786.

[61]  Tucson,et al.  BIG FISH, LITTLE FISH: TWO NEW ULTRA-FAINT SATELLITES OF THE MILKY WAY , 2010, 1002.0504.

[62]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[63]  G. Bryan,et al.  CHEMICAL ABUNDANCE PATTERNS AND THE EARLY ENVIRONMENT OF DWARF GALAXIES , 2013, 1306.5239.

[64]  N. Gnedin Effect of Reionization on Structure Formation in the Universe , 2000, astro-ph/0002151.

[65]  A. Helmi,et al.  Streams in the Aquarius stellar haloes , 2013, 1307.0008.

[66]  M. Loupias,et al.  The MUSE second-generation VLT instrument , 2010, Astronomical Telescopes + Instrumentation.

[67]  J. Tumlinson CHEMICAL EVOLUTION IN HIERARCHICAL MODELS OF COSMIC STRUCTURE. II. THE FORMATION OF THE MILKY WAY STELLAR HALO AND THE DISTRIBUTION OF THE OLDEST STARS , 2009, 0911.1786.

[68]  C. Frenk,et al.  The spatial distribution of galactic satellites in the Λ cold dark matter cosmology , 2012, 1206.1340.

[69]  A. Schroeder,et al.  The Galactic supernova rate , 1994 .

[70]  A. Helmi,et al.  Galactic stellar haloes in the CDM model , 2009, 0910.3211.

[71]  A. O'Hagan,et al.  Probabilistic sensitivity analysis of complex models: a Bayesian approach , 2004 .

[72]  P. Thomas,et al.  Hybrid galaxy evolution modelling: Monte Carlo Markov Chain parameter estimation in semi-analytic models of galaxy formation , 2008, 0810.2548.

[73]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[74]  E. Starkenburg,et al.  GALACTIC ARCHAEOLOGY: NEAR-FIELD COSMOLOGY AND THE FORMATION OF THE MILKY WAY , 2012 .

[75]  A. Lançon,et al.  SF2A-2013: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics , 2013 .

[76]  A. O'Hagan,et al.  Bayesian inference for the uncertainty distribution of computer model outputs , 2002 .

[77]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..