A Trust Region Method for Nonlinear Programming Based on Primal Interior-Point Techniques

This paper describes a new trust region method for solving large-scale optimization problems with nonlinear equality and inequality constraints. The new algorithm employs interior-point techniques from linear programming, adapting them for more general nonlinear problems. A software implementation based entirely on sparse matrix methods is described. The software handles infeasible start points, identifies the active set of constraints at a solution, and can use second derivative information to solve problems. Numerical results are reported for large and small problems, and a comparison is made with other large-scale optimization codes.

[1]  E. J. Craig The N‐Step Iteration Procedures , 1955 .

[2]  P. Ritch Discrete optimal control with multiple constraints I Constraint separation and transformation technique , 1973 .

[3]  N. Maratos,et al.  Exact penalty function algorithms for finite dimensional and control optimization problems , 1978 .

[4]  Michael A. Saunders,et al.  Large-scale linearly constrained optimization , 1978, Math. Program..

[5]  John K. Reid,et al.  Some Design Features of a Sparse Matrix Code , 1979, TOMS.

[6]  Philip E. Gill,et al.  Practical optimization , 1981 .

[7]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[8]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[9]  Michael A. Saunders,et al.  User''s guide for NPSOL (Ver-sion 4.0): A FORTRAN package for nonlinear programming , 1984 .

[10]  A. Vardi A Trust Region Algorithm for Equality Constrained Minimization: Convergence Properties and Implementation , 1985 .

[11]  M. R. Celis A TRUST REGION STRATEGY FOR NONLINEAR EQUALITY CONSTRAINED OPTIMIZATION (NONLINEAR PROGRAMMING, SEQUENTIAL QUADRATIC) , 1985 .

[12]  Richard H. Byrd,et al.  A Trust Region Algorithm for Nonlinearly Constrained Optimization , 1987 .

[13]  Earl R. Barnes,et al.  A variation on Karmarkar’s algorithm for solving linear programming problems , 1986, Math. Program..

[14]  R. Fletcher Practical Methods of Optimization , 1988 .

[15]  Mauricio G. C. Resende,et al.  An implementation of Karmarkar's algorithm for linear programming , 1989, Math. Program..

[16]  E. Omojokun Trust region algorithms for optimization with nonlinear equality and inequality constraints , 1990 .

[17]  Ya-Xiang Yuan,et al.  A trust region algorithm for equality constrained optimization , 1990, Math. Program..

[18]  Margaret H. Wright,et al.  Interior methods for constrained optimization , 1992, Acta Numerica.

[19]  Clóvis C. Gonzaga,et al.  Path-Following Methods for Linear Programming , 1992, SIAM Rev..

[20]  R. Tapia,et al.  On the Formulation of the Primal-Dual Newton Interior-Point Method for Nonlinear Programming , 1992 .

[21]  Roy E. Marsten,et al.  On Implementing Mehrotra's Predictor-Corrector Interior-Point Method for Linear Programming , 1992, SIAM J. Optim..

[22]  T. Plantenga Large-scale nonlinear constrained optimization using trust regions , 1994 .

[23]  J. Betts,et al.  A sparse nonlinear optimization algorithm , 1994 .

[24]  Jorge Nocedal,et al.  Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..

[25]  Yin Zhang,et al.  A Study of Indicators for Identifying Zero Variables in Interior-Point Methods , 1994, SIAM Rev..

[26]  Thomas F. Coleman,et al.  On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds , 1994, Math. Program..

[27]  Michael A. Saunders,et al.  A Practical Interior-Point Method for Convex Programming , 1995, SIAM J. Optim..

[28]  Stephen J. Wright Stability of Linear Equations Solvers in Interior-Point Methods , 1995, SIAM J. Matrix Anal. Appl..

[29]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[30]  L. N. Vicente,et al.  Trust-Region Interior-Point SQP Algorithms for a Class of Nonlinear Programming Problems , 1998 .

[31]  L. N. Vicente,et al.  Trust-Region Interior-Point Algorithms for Minimization Problems with Simple Bounds , 1996 .

[32]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[33]  Joseph R. Shinnerl,et al.  Stability of Symmetric Ill-Conditioned Systems Arising in Interior Methods for Constrained Optimization , 1996, SIAM J. Matrix Anal. Appl..

[34]  Stephen J. Wright Stability of Augmented System Factorizations in Interior-Point Methods , 1997, SIAM J. Matrix Anal. Appl..

[35]  Hiroshi Yamashita A globally convergent primal-dual interior point method for constrained optimization , 1998 .

[36]  Jorge Nocedal,et al.  On the Implementation of an Algorithm for Large-Scale Equality Constrained Optimization , 1998, SIAM J. Optim..

[37]  Anders Forsgren,et al.  Primal-Dual Interior Methods for Nonconvex Nonlinear Programming , 1998, SIAM J. Optim..

[38]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..