Extracting nanoscale membrane morphology from single-molecule localizations.

[1]  Chenxiang Lin,et al.  Fluorogenic DNA-PAINT for faster, low-background super-resolution imaging , 2022, Nature Methods.

[2]  N. Mazumder,et al.  Deep learning-based image processing in optical microscopy , 2022, Biophysical Reviews.

[3]  M. Lakadamyali,et al.  Technological advances in super-resolution microscopy to study cellular processes. , 2022, Molecular cell.

[4]  J. Lippincott-Schwartz,et al.  Whole-cell organelle segmentation in volume electron microscopy , 2021, Nature.

[5]  Suliana Manley,et al.  Single-molecule localization microscopy , 2021, Nature Reviews Methods Primers.

[6]  D. Toomre,et al.  Extremely Bright, Near-IR Emitting Spontaneously Blinking Fluorophores Enable Ratiometric Multicolor Nanoscopy in Live Cells , 2021, bioRxiv.

[7]  Sergey Ablameyko,et al.  A survey on applications of deep learning in microscopy image analysis , 2021, Comput. Biol. Medicine.

[8]  M. Menenti,et al.  Challenges and Opportunities in Lidar Remote Sensing , 2021, Frontiers in Remote Sensing.

[9]  J. Nylandsted,et al.  Plasma membrane integrity in health and disease: significance and therapeutic potential , 2021, Cell discovery.

[10]  W. Moerner,et al.  Cryogenic Super-Resolution Fluorescence and Electron Microscopy Correlated at the Nanoscale. , 2021, Annual review of physical chemistry.

[11]  David Baddeley,et al.  PYMEVisualize: an open-source tool for exploring 3D super-resolution data , 2020, Nature Methods.

[12]  Daniel Cohen-Or,et al.  Point2Mesh , 2020, ACM Trans. Graph..

[13]  N. Pfanner,et al.  Shaping the mitochondrial inner membrane in health and disease , 2020, Journal of internal medicine.

[14]  J. Ellenberg,et al.  MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells , 2020, Nature Methods.

[15]  P. De Camilli,et al.  Nanoscale subcellular architecture revealed by multicolor 3D salvaged fluorescence imaging , 2019, Nature Methods.

[16]  Andrew E. S. Barentine,et al.  Dynamic nanoscale morphology of the ER surveyed by STED microscopy , 2018, The Journal of cell biology.

[17]  Lucien E. Weiss,et al.  Revealing Nanoscale Morphology of the Primary Cilium Using Super-Resolution Fluorescence Microscopy , 2018, bioRxiv.

[18]  Pedro Carvalho,et al.  Here, there, and everywhere: The importance of ER membrane contact sites , 2018, Science.

[19]  Helmut Grubmüller,et al.  Detection of single microtubules in living cells: particle transport can occur in both directions along the same microtubule , 1984, The Journal of cell biology.

[20]  J. Bewersdorf,et al.  Biological Insight from Super-Resolution Microscopy: What We Can Learn from Localization-Based Images. , 2018, Annual review of biochemistry.

[21]  N. Minc,et al.  How cells sense their own shape – mechanisms to probe cell geometry and their implications in cellular organization and function , 2018, Journal of Cell Science.

[22]  M. Kaksonen,et al.  Mechanisms of clathrin-mediated endocytosis , 2018, Nature Reviews Molecular Cell Biology.

[23]  Alberto Diaspro,et al.  STED super-resolved microscopy , 2018, Nature Methods.

[24]  E. Roselló-Lletí,et al.  Changes in human Golgi apparatus reflect new left ventricular dimensions and function in dilated cardiomyopathy patients , 2017, European journal of heart failure.

[25]  Jordan R. Myers,et al.  Ultra-High Resolution 3D Imaging of Whole Cells , 2016, Cell.

[26]  S. Mochrie,et al.  Improved Determination of Subnuclear Position Enabled by Three-Dimensional Membrane Reconstruction. , 2016, Biophysical journal.

[27]  Wei Dai,et al.  Quantifying Variability of Manual Annotation in Cryo-Electron Tomograms , 2016, Microscopy and Microanalysis.

[28]  W. Prinz,et al.  Form follows function: the importance of endoplasmic reticulum shape. , 2015, Annual review of biochemistry.

[29]  G. Griffiths,et al.  Antibodies for immunolabeling by light and electron microscopy: not for the faint hearted , 2014, Histochemistry and Cell Biology.

[30]  Paul J Atzberger,et al.  Shape matters in protein mobility within membranes , 2014, Proceedings of the National Academy of Sciences.

[31]  Uma Goyal,et al.  Untangling the web: mechanisms underlying ER network formation. , 2013, Biochimica et biophysica acta.

[32]  Narayanan Kasthuri,et al.  Stacked Endoplasmic Reticulum Sheets Are Connected by Helicoidal Membrane Motifs , 2013, Cell.

[33]  Michael M. Kazhdan,et al.  Screened poisson surface reconstruction , 2013, TOGS.

[34]  David Baddeley,et al.  Visualization of Localization Microscopy Data , 2010, Microscopy and Microanalysis.

[35]  Jae-Chul Kim,et al.  Shrink‐Wrapped Boundary Face Algorithm for Mesh Reconstruction from Unorganized Points , 2005 .

[36]  Scott Schaefer,et al.  Dual marching cubes: primal contouring of dual grids , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[37]  Leif Kobbelt,et al.  A remeshing approach to multiresolution modeling , 2004, SGP '04.

[38]  Brian Curless,et al.  From range scans to 3D models , 1999, COMG.

[39]  David N. Mastronarde,et al.  Golgi Structure in Three Dimensions: Functional Insights from the Normal Rat Kidney Cell , 1999, The Journal of cell biology.

[40]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[41]  Paolo Cignoni,et al.  MeshLab: an Open-Source Mesh Processing Tool , 2008, Eurographics Italian Chapter Conference.

[42]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..