Efficient second harmonic generation in nanophotonic GaAs-on-insulator waveguides.

Nonlinear frequency conversion plays a crucial role in advancing the functionality of next-generation optical systems. Portable metrology references and quantum networks will demand highly efficient second-order nonlinear devices, and the intense nonlinear interactions of nanophotonic waveguides can be leveraged to meet these requirements. Here we demonstrate second harmonic generation (SHG) in GaAs-on-insulator waveguides with unprecedented efficiency of 40 W-1 for a single-pass device. This result is achieved by minimizing the propagation loss and optimizing phase-matching. We investigate surface-state absorption and design the waveguide geometry for modal phase-matching with tolerance to fabrication variation. A 2.0 µm pump is converted to a 1.0 µm signal in a length of 2.9 mm with a wide signal bandwidth of 148 GHz. Tunable and efficient operation is demonstrated over a temperature range of 45 °C with a slope of 0.24 nm/°C. Wafer-bonding between GaAs and SiO2 is optimized to minimize waveguide loss, and the devices are fabricated on 76 mm wafers with high uniformity. We expect this device to enable fully integrated self-referenced frequency combs and high-rate entangled photon pair generation.

[1]  H. Tang,et al.  Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W , 2019, Optica.

[2]  A. Boes,et al.  Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators , 2019, Nature Communications.

[3]  M. Fejer,et al.  Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides , 2019, Optica.

[4]  John E. Bowers,et al.  On-chip polarization rotator for type I second harmonic generation , 2019, APL Photonics.

[5]  K. Srinivasan,et al.  Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs. , 2019, Optics letters.

[6]  Ian Coddington,et al.  Multifunctional integrated photonics in the mid-infrared with suspended AlGaAs on silicon , 2019, Optica.

[7]  Stuart May,et al.  Second-harmonic generation in AlGaAs-on-insulator waveguides. , 2019, Optics letters.

[8]  John E. Bowers,et al.  Strong frequency conversion in heterogeneously integrated GaAs resonators , 2019, APL Photonics.

[9]  K. Srinivasan,et al.  Terahertz-Rate Kerr-Microresonator Optical Clockwork , 2018, Physical Review X.

[10]  Martin M. Fejer,et al.  Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides , 2018, Optica.

[11]  Zheng Gong,et al.  17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators , 2018, Applied Physics Letters.

[12]  B. Ilic,et al.  Interlocking Kerr-microresonator frequency combs for microwave to optical synthesis. , 2018, Optics letters.

[13]  John E. Bowers,et al.  Heterogeneously Integrated GaAs Waveguides on Insulator for Efficient Frequency Conversion , 2018, Laser & Photonics Reviews.

[14]  J. Bowers,et al.  Micro‐Resonator Soliton Generated Directly with a Diode Laser , 2017, 1711.06307.

[15]  Qiang Lin,et al.  On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. , 2017, Optics express.

[16]  Bruno Gérard,et al.  Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 10 6 , 2017 .

[17]  Jerry R. Meyer,et al.  Semiconductor optical amplifiers at 2.0‐µm wavelength on silicon , 2017 .

[18]  Erwan Lucas,et al.  Octave-spanning dissipative Kerr soliton frequency combs in Si 3 N 4 microresonators , 2017, 1701.08594.

[19]  Qing Li,et al.  Stably accessing octave-spanning microresonator frequency combs in the soliton regime. , 2016, Optica.

[20]  John E. Bowers,et al.  Thin film wavelength converters for photonic integrated circuits , 2016 .

[21]  I. Coddington,et al.  Dual-comb spectroscopy. , 2016, Optica.

[22]  Xiang Guo,et al.  Parametric down-conversion photon-pair source on a nanophotonic chip , 2016, Light: Science & Applications.

[23]  A. Lemaître,et al.  Origin of optical losses in gallium arsenide disk whispering gallery resonators. , 2015, Optics express.

[24]  K. Vahala,et al.  Microresonator frequency comb optical clock , 2013, 1309.3525.

[25]  Daniil A. Livshits,et al.  Green-to-red tunable SHG of a quantum-dot laser in a PPKTP waveguide , 2012 .

[26]  I Favero,et al.  Large second-harmonic generation at 1.55 μmin oxidized AlGaAs waveguides. , 2011, Optics letters.

[27]  Jacob M. Taylor,et al.  Generation of ultrastable microwaves via optical frequency division , 2011, 1101.3616.

[28]  Jelena Vucković,et al.  Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power. , 2009, Optics express.

[29]  I. Coddington,et al.  Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. , 2007, Physical review letters.

[30]  Ulf Lindberg,et al.  Adhension quantification methods for wafer bonding , 2005 .

[31]  M M Fejer,et al.  Efficient continuous wave second harmonic generation pumped at 1.55 microm in quasi-phase-matched AlGaAs waveguides. , 2005, Optics express.

[32]  Ofer Levi,et al.  Improved dispersion relations for GaAs and applications to nonlinear optics , 2003 .

[33]  Manish Bhardwaj,et al.  Second-harmonic generation in periodically poled GaN , 2003 .

[34]  M M Fejer,et al.  Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation. , 2002, Optics letters.

[35]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[36]  M. Fejer,et al.  Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate. , 2002, Optics letters.

[37]  Knight,et al.  Optical frequency synthesizer for precision spectroscopy , 2000, Physical review letters.

[38]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[39]  P. Günter,et al.  Linear and nonlinear optical properties of KNbO3 ridge waveguides , 1998 .

[40]  Siegfried Janz,et al.  Second-harmonic generation at l=1.6 micro m in AlGaAs/Al2O3 waveguides using birefringence phase matching , 1998 .

[41]  T. Kondo,et al.  Redetemination of the absolute scale of the second-order nonlinear optical coefficients , 1994, Proceedings of 5th European Quantum Electronics Conference.

[42]  D. A. Roberts,et al.  Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions , 1992 .

[43]  Robert L. Byer,et al.  Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB/sub 2/O/sub 4/, LiIO/sub 3/, MgO:LiNbO/sub 3/, and KTP measured by phase-matched second-harmonic generation , 1990 .

[44]  Robert L. Byer,et al.  Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals , 1976 .

[45]  A. Yariv Coupled-mode theory for guided-wave optics , 1973 .

[46]  I. Malitson Interspecimen Comparison of the Refractive Index of Fused Silica , 1965 .

[47]  J. M. Whelan,et al.  Infrared Absorption and Electron Effective Mass inn-Type Gallium Arsenide , 1959 .

[48]  D. Spencer An Integrated-Photonics Optical-Frequency Synthesizer , 2017 .

[49]  M Kaminska,et al.  EL2 Defect in GaAs , 1987 .