Aptamers for allosteric regulation.

Aptamers are useful for allosteric regulation because they are nucleic acid-based structures in which ligand binding induces conformational changes that may alter the function of a connected oligonucleotide at a distant site. Through this approach, a specific input is efficiently converted into an altered output. This property makes these biomolecules ideally suited to function as sensors or switches in biochemical assays or inside living cells. The ability to select oligonucleotide-based recognition elements in vitro in combination with the availability of nucleic acids with enzymatic activity has led to the development of a wide range of engineered allosteric aptasensors and aptazymes. Here, we discuss recent progress in the screening, design and diversity of these conformational switching oligonucleotides. We cover their application in vitro and for regulating gene expression in both prokaryotes and eukaryotes.

[1]  M. Famulok,et al.  Functional Aptamers and Aptazymes in Biotechnology, Diagnostics, and Therapy , 2007 .

[2]  Barbara Fink,et al.  Conditional gene expression by controlling translation with tetracycline-binding aptamers. , 2003, Nucleic acids research.

[3]  Yi Lu,et al.  Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle-DNAzyme conjugates. , 2010, Chemical communications.

[4]  E. Westhof,et al.  Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity , 2003, Nature Structural Biology.

[5]  Koichi Abe,et al.  Mechanism‐Guided Library Design and Dual Genetic Selection of Synthetic OFF Riboswitches , 2009, Chembiochem : a European journal of chemical biology.

[6]  Chase L. Beisel,et al.  Model-guided design of ligand-regulated RNAi for programmable control of gene expression , 2008, Molecular systems biology.

[7]  E. Wang,et al.  Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. , 2009, Analytical chemistry.

[8]  R. Breaker,et al.  Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes , 2005, Nature Biotechnology.

[9]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[10]  R. Gaur,et al.  An artificial riboswitch for controlling pre-mRNA splicing. , 2005, RNA.

[11]  Ronald R. Breaker,et al.  Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP , 1999, Nature Structural Biology.

[12]  Atsushi Ogawa,et al.  A Novel Label‐Free Biosensor Using an Aptazyme–Suppressor‐tRNA Conjugate and an Amber Mutated Reporter Gene , 2008, Chembiochem : a European journal of chemical biology.

[13]  M. Green,et al.  Controlling gene expression in living cells through small molecule-RNA interactions. , 1998, Science.

[14]  Tao Li,et al.  Lead(II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection. , 2010, Analytical chemistry.

[15]  Yohei Yokobayashi,et al.  Artificial control of gene expression in mammalian cells by modulating RNA interference through aptamer-small molecule interaction. , 2006, RNA.

[16]  Beatrix Suess,et al.  Screening for engineered neomycin riboswitches that control translation initiation. , 2007, RNA.

[17]  Christina D Smolke,et al.  Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems , 2010, Proceedings of the National Academy of Sciences.

[18]  Gerald F. Joyce,et al.  Autocatalytic aptazymes enable ligand-dependent exponential amplification of RNA , 2009, Nature Biotechnology.

[19]  Itamar Willner,et al.  Aptamer-DNAzyme hairpins for amplified biosensing. , 2009, Analytical chemistry.

[20]  P. Beal,et al.  Controlling protein activity with ligand-regulated RNA aptamers. , 2002, Chemistry & biology.

[21]  Darko Stefanovic,et al.  A deoxyribozyme-based molecular automaton , 2003, Nature Biotechnology.

[22]  Markus Wieland,et al.  Artificial ribozyme switches containing natural riboswitch aptamer domains. , 2009, Angewandte Chemie.

[23]  M. Famulok,et al.  Aptamers as tools in molecular biology and immunology. , 1999, Current topics in microbiology and immunology.

[24]  Kyungsook Han,et al.  Intracellular expression of the T-cell factor-1 RNA aptamer as an intramer , 2006, Molecular Cancer Therapeutics.

[25]  J. Gallivan,et al.  A flow cytometry-based screen for synthetic riboswitches , 2008, Nucleic acids research.

[26]  R R Breaker,et al.  Rational design of allosteric ribozymes. , 1997, Chemistry & biology.

[27]  Eun Jeong Cho,et al.  Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. , 2005, Journal of the American Chemical Society.

[28]  N. Walter,et al.  A biosensor for theophylline based on fluorescence detection of ligand-induced hammerhead ribozyme cleavage. , 2002, RNA.

[29]  M. Merkx,et al.  Engineering Protein Switches: Sensors, Regulators, and Spare Parts for Biology and Biotechnology , 2011, Chembiochem : a European journal of chemical biology.

[30]  Michael Famulok,et al.  Allosteric aptamers and aptazymes as probes for screening approaches. , 2005, Current opinion in molecular therapeutics.

[31]  Shana Topp,et al.  Emerging applications of riboswitches in chemical biology. , 2010, ACS chemical biology.

[32]  Jung Hur,et al.  β-Catenin Regulates Multiple Steps of RNA Metabolism as Revealed by the RNA Aptamer in Colon Cancer Cells , 2007 .

[33]  M. Mascini,et al.  Analytical applications of aptamers. , 2005, Biosensors & bioelectronics.

[34]  Evgeny Nudler,et al.  Flipping Riboswitches , 2006, Cell.

[35]  David R. Liu,et al.  Engineering a ligand-dependent RNA transcriptional activator. , 2004, Chemistry & biology.

[36]  A. Waggoner,et al.  Synthesis of new fluorogenic cyanine dyes and incorporation into RNA fluoromodules. , 2008, Organic letters.

[37]  R. Breaker,et al.  Genetic Control by Metabolite‐Binding Riboswitches , 2003, Chembiochem : a European journal of chemical biology.

[38]  N. Ahn,et al.  Monitoring post-translational modification of proteins with allosteric ribozymes , 2002, Nature Biotechnology.

[39]  Yohei Yokobayashi,et al.  Conditional RNA interference mediated by allosteric ribozyme. , 2009, Journal of the American Chemical Society.

[40]  Karl-Dieter Entian,et al.  A fast and efficient translational control system for conditional expression of yeast genes , 2009, Nucleic acids research.

[41]  R. Levine,et al.  DNA computing circuits using libraries of DNAzyme subunits. , 2010, Nature nanotechnology.

[42]  Markus Wieland,et al.  Artificial Riboswitches: Synthetic mRNA‐Based Regulators of Gene Expression , 2008, Chembiochem : a European journal of chemical biology.

[43]  Maung Nyan Win,et al.  Frameworks for programming biological function through RNA parts and devices. , 2009, Chemistry & biology.

[44]  Itamar Willner,et al.  Amplified biosensing using the horseradish peroxidase-mimicking DNAzyme as an electrocatalyst. , 2010, Analytical chemistry.

[45]  K. Dery,et al.  Ligand-induced sequestering of branchpoint sequence allows conditional control of splicing , 2008, BMC Molecular Biology.

[46]  E. Buratti,et al.  Influence of RNA Secondary Structure on the Pre-mRNA Splicing Process , 2004, Molecular and Cellular Biology.

[47]  Allosteric aptamers controlling a signal amplification cascade allow visual detection of molecules at picomolar concentrations. , 2006, Biochemistry.

[48]  Eric D Brown,et al.  A FACS‐Based Approach to Engineering Artificial Riboswitches , 2008, Chembiochem : a European journal of chemical biology.

[49]  Beatrix Suess,et al.  Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast , 2007, Nucleic acids research.

[50]  Markus Wieland,et al.  Small-molecule-dependent regulation of transfer RNA in bacteria. , 2009, Angewandte Chemie.

[51]  M. Famulok,et al.  A novel RNA motif for neomycin recognition. , 1995, Chemistry & biology.

[52]  Wataru Yoshida,et al.  Photonic Boolean logic gates based on DNA aptamers. , 2007, Chemical communications.

[53]  Markus Wieland,et al.  Aptazyme-mediated regulation of 16S ribosomal RNA. , 2010, Chemistry & biology.

[54]  J. KlugS,et al.  特異な延長因子SelBに結合する新規mRNAモチーフのin vitro及びin vivoにおける性質 , 1997 .

[55]  Yi Lu,et al.  Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. , 2004, Analytical chemistry.

[56]  Tan Inoue,et al.  Synthetic biology with RNA motifs. , 2009, The international journal of biochemistry & cell biology.

[57]  E. Wang,et al.  G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin. , 2008, Chemical communications.

[58]  Simon Ausländer,et al.  A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression. , 2010, Molecular bioSystems.

[59]  A. Hüttenhofer,et al.  In vitro and in vivo characterization of novel mRNA motifs that bind special elongation factor SelB. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Shana Topp,et al.  Random Walks to Synthetic Riboswitches—A High‐Throughput Selection Based on Cell Motility , 2008, Chembiochem : a European journal of chemical biology.

[61]  M. Famulok,et al.  In vitro selection of allosteric ribozymes: theory and experimental validation. , 2001, Journal of molecular biology.

[62]  J. Gallivan,et al.  Guiding bacteria with small molecules and RNA. , 2007, Journal of the American Chemical Society.

[63]  Dmitry M Kolpashchikov,et al.  Boolean control of aptamer binding states. , 2005, Journal of the American Chemical Society.

[64]  Michael Famulok,et al.  Conformational changes in the expression domain of the Escherichia coli thiM riboswitch , 2007, Nucleic acids research.

[65]  Yingfu Li,et al.  Simple Fluorescent Sensors Engineered with Catalytic DNA ‘MgZ’ Based on a Non-Classic Allosteric Design , 2007, PloS one.

[66]  M. Win,et al.  Higher-Order Cellular Information Processing with Synthetic RNA Devices , 2008, Science.

[67]  Darko Stefanovic,et al.  Deoxyribozyme-based logic gates. , 2002, Journal of the American Chemical Society.

[68]  Juewen Liu,et al.  Functional nucleic acid sensors. , 2009, Chemical reviews.

[69]  Amy C Yan,et al.  Protein-dependent ribozymes report molecular interactions in real time , 2002, Nature Biotechnology.

[70]  K. Ikebukuro,et al.  Aptameric enzyme subunit for biosensing based on enzymatic activity measurement. , 2006, Analytical chemistry.

[71]  M. Stojanović,et al.  Modular aptameric sensors. , 2004, Journal of the American Chemical Society.

[72]  Christina D Smolke,et al.  Reprogramming Cellular Behavior with RNA Controllers Responsive to Endogenous Proteins , 2010, Science.

[73]  M. Win,et al.  A modular and extensible RNA-based gene-regulatory platform for engineering cellular function , 2007, Proceedings of the National Academy of Sciences.

[74]  Markus Wieland,et al.  Improved aptazyme design and in vivo screening enable riboswitching in bacteria. , 2008, Angewandte Chemie.

[75]  G. F. Joyce,et al.  An isothermal system that couples ligand-dependent catalysis to ligand-independent exponential amplification. , 2011, Journal of the American Chemical Society.

[76]  Modular blue fluorescent RNA sensors for label-free detection of target molecules. , 2010, Molecular bioSystems.

[77]  Z. Deng,et al.  Rational design of an optical adenosine sensor by conjugating a DNA aptamer with split DNAzyme halves. , 2008, Chemical communications.

[78]  DNA aptamer-mediated regulation of the hairpin ribozyme by human α-thrombin , 2007 .

[79]  Le A. Trinh,et al.  Programmable in situ amplification for multiplexed imaging of mRNA expression , 2010, Nature Biotechnology.

[80]  Z. Deng,et al.  Colorimetric Hg2+ detection with a label-free and fully DNA-structured sensor assembly incorporating G-quadruplex halves. , 2009, The Analyst.

[81]  Yingfu Li,et al.  DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. , 1998, Chemistry & biology.

[82]  M. Merkx,et al.  Engineering Protein Switches: Sensors, Regulators, and Spare Parts for Biology and Biotechnology , 2011, Chembiochem : a European journal of chemical biology.

[83]  B. Suess,et al.  Engineered riboswitches: Overview, problems and trends , 2008, RNA biology.

[84]  Michael Famulok,et al.  RNA ligands that distinguish metabolite-induced conformations in the TPP riboswitch. , 2007, Angewandte Chemie.

[85]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[86]  B. Ge,et al.  Allosterically activated Diels-Alder catalysis by a ribozyme. , 2005, Journal of the American Chemical Society.

[87]  Atsushi Ogawa,et al.  An Artificial Aptazyme‐Based Riboswitch and its Cascading System in E. coli , 2008, Chembiochem : a European journal of chemical biology.

[88]  J. Micklefield,et al.  Reengineering orthogonally selective riboswitches , 2010, Proceedings of the National Academy of Sciences.

[89]  M. Kurz,et al.  ADP-specific sensors enable universal assay of protein kinase activity. , 2004, Chemistry & biology.

[90]  Joy Sinha,et al.  Reprogramming Bacteria to Seek and Destroy a Herbicide , 2010, Nature chemical biology.

[91]  G. F. Joyce,et al.  Self-Sustained Replication of an RNA Enzyme , 2009, Science.

[92]  M. Famulok,et al.  Intramers as promising new tools in functional proteomics. , 2001, Chemistry & biology.

[93]  Harry M. T. Choi,et al.  Programming biomolecular self-assembly pathways , 2008, Nature.

[94]  M. Famulok,et al.  Sensing complex regulatory networks by conformationally controlled hairpin ribozymes. , 2004, Nucleic acids research.

[95]  G. Mayer The chemical biology of aptamers. , 2009, Angewandte Chemie.

[96]  Yi Lu,et al.  Smart Nanomaterials Responsive to Multiple Chemical Stimuli with Controllable Cooperativity , 2006 .

[97]  Itamar Willner,et al.  Cooperative multicomponent self-assembly of nucleic acid structures for the activation of DNAzyme cascades: a paradigm for DNA sensors and aptasensors. , 2009, Chemistry.

[98]  R R Breaker,et al.  Nucleic acid molecular switches. , 1999, Trends in biotechnology.

[99]  Xi Chen,et al.  Direct selection for ribozyme cleavage activity in cells. , 2009, RNA.

[100]  Dong-Eun Kim,et al.  Cross-catalytic replication of an RNA ligase ribozyme. , 2004, Chemistry & biology.

[101]  Atsushi Ogawa,et al.  Rational design of artificial riboswitches based on ligand-dependent modulation of internal ribosome entry in wheat germ extract and their applications as label-free biosensors. , 2011, RNA.

[102]  Gheorghe Paun,et al.  Splicing , 2019, Bull. EATCS.

[103]  Andrew Ellington,et al.  In vitro selection of an allosteric ribozyme that transduces analytes to amplicons , 1999, Nature Biotechnology.

[104]  Juewen Liu,et al.  A simple and sensitive "dipstick" test in serum based on lateral flow separation of aptamer-linked nanostructures. , 2006, Angewandte Chemie.