Optimal estimation of quantum observables

We consider the problem of estimating the ensemble average of an observable on an ensemble of equally prepared identical quantum systems. We show that, among all kinds of measurements performed jointly on the copies, the optimal unbiased estimation is achieved by the usual procedure that consists in performing independent measurements of the observable on each system and averaging the measurement outcomes.

[1]  Marlan O. Scully,et al.  Quantum optics. Experimental gravity, and measurement theory , 1983 .

[2]  W. Lamb Quantum Theory of Measurement , 1986 .

[3]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[4]  Giulio Chiribella,et al.  Covariant quantum measurements that maximize the likelihood , 2004, quant-ph/0403083.

[5]  G. M. D'Ariano,et al.  Informationally complete measurements on bipartite quantum systems: Comparing local with global measurements , 2005 .

[6]  E Bagan,et al.  Purity estimation with separable measurements. , 2005, Physical review letters.

[7]  M. Ballester,et al.  Entanglement is not very useful for estimating multiple phases , 2004, quant-ph/0403190.

[8]  Hoi-Kwong Lo,et al.  Introduction to Quantum Computation Information , 2002 .

[9]  Anthony Chefles Unambiguous discrimination between linearly dependent states with multiple copies , 2001, quant-ph/0105016.

[10]  A. Chatterjee,et al.  Introduction to Quantum Computation , 2003 .

[11]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[12]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[13]  G M D'Ariano,et al.  Using entanglement improves the precision of quantum measurements. , 2001, Physical review letters.

[14]  Giacomo Mauro D'Ariano,et al.  Optimal phase estimation for qubits in mixed states (4 pages) , 2005 .

[15]  G Chiribella,et al.  Efficient use of quantum resources for the transmission of a reference frame. , 2004, Physical review letters.

[16]  V. Buzek,et al.  Universal Algorithm for Optimal Estimation of Quantum States from Finite Ensembles via Realizable Ge , 1997, quant-ph/9707028.