A SPECTROSCOPIC CONFIRMATION OF THE BOOTES II DWARF SPHEROIDAL

We present a new suite of photometric and spectroscopic data for the faint Bootes II dwarf spheroidal galaxy (dSph) candidate. Our deep photometry, obtained with the Isaac Newton Telescope/Wide Field Camera, suggests a distance of 46 kpc and a small half-light radius of 4.0' (56 pc), consistent with previous estimates. Follow-up spectroscopy obtained with the Gemini/GMOS instrument yielded radial velocities and metallicities. While the majority of our targets covers a broad range in velocities and metallicities, we find five stars that share very similar velocities and metallicities and that are all compatible with the colors and magnitudes of the galaxy's likely red giant branch. We interpret these as a spectroscopic detection of the Bootes II system. These stars have a mean velocity of –117 km s–1, a velocity dispersion of (10.5 ± 7.4) km s–1, and a mean [Fe/H] of –1.79 dex, with a dispersion of 0.14 dex. At this metallicity, Boo II is not consistent with the stellar-mass-metallicity relation for the more luminous dwarf galaxies. Coupled with our distance estimate, its high negative systemic velocity rules out any physical connection with its projected neighbor, the Bootes I dwarf spheroidal, which has a velocity of ~+100 km s–1. The velocity and distance of Bootes II coincide with those of the leading arm of Sagittarius, which passes through this region of the sky, so that it is possible that Bootes II may be a stellar system associated with the Sagittarius stream. Finally, we note that the properties of Bootes II are consistent with it being the surviving remnant of a previously larger and more luminous dSph galaxy.

[1]  R. Ibata,et al.  Galactic Halo Substructure in the Sloan Digital Sky Survey: The Ancient Tidal Stream from the Sagittarius Dwarf Galaxy , 2000, astro-ph/0004255.

[2]  Shay Zucker,et al.  Cross-correlation and maximum-likelihood analysis: a new approach to combining cross-correlation functions , 2003 .

[3]  Santiago,et al.  The exotic chemical composition of the Sagittarius dwarf Spheroidal galaxy , 2006 .

[4]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[5]  Santiago,et al.  The Ital-FLAMES survey of the Sagittarius dwarf spheroidal galaxy - I. Chemical abundances of bright RGB stars , 2005, astro-ph/0506622.

[6]  Jeffrey L. Carlin,et al.  Exploring Halo Substructure with Giant Stars: The Dynamics and Metallicity of the Dwarf Spheroidal in Boötes , 2006, astro-ph/0606271.

[7]  E. K. Grebel,et al.  COMPLEXITY ON SMALL SCALES: THE METALLICITY DISTRIBUTION OF THE CARINA DWARF SPHEROIDAL GALAXY , 2006 .

[8]  Jr.,et al.  A New Milky Way Dwarf Galaxy in Ursa Major , 2005, astro-ph/0503552.

[9]  V. Belokurov,et al.  The Origin of the Bifurcation in the Sagittarius Stream , 2006, astro-ph/0605026.

[10]  M. Irwin,et al.  INT WFS pipeline processing , 2001 .

[11]  Michael Kuhlen,et al.  Redefining the Missing Satellites Problem , 2007, 0704.1817.

[12]  European Southern Observatory,et al.  The Sgr dSph hosts a metal-rich population , 2004 .

[13]  Peter B. Stetson,et al.  FIDUCIAL STELLAR POPULATION SEQUENCES FOR THE u′g′r′i′z′ SYSTEM , 2007, 0711.4045.

[14]  R.F.G. Wyse,et al.  The merging history of the Milky Way , 1996 .

[15]  Taft E. Armandroff,et al.  Integrated-Light Spectroscopy of Globular Clusters at the Infrared CA II Lines , 1988 .

[16]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[17]  P. Bonifacio,et al.  Family ties: Abundances in Terzan 7, a Sgr dSph globular cluster , 2005 .

[18]  L. Gardiner,et al.  N-body Simulations of the Small Magellanic Cloud and the Magellanic Stream , 1996 .

[19]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[20]  P. Frinchaboy,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. II. Swope Telescope Spectroscopy of M Giant Stars in the Dynamically Cold Sagittarius Tidal Stream , 2004, astro-ph/0403701.

[21]  Andreas Koch,et al.  The Observed Properties of Dark Matter on Small Spatial Scales , 2007 .

[22]  Beatriz Barbuy,et al.  The Near-infrared Nai Doublet Feature in M Stars * , 1996 .

[23]  University of Edinburgh,et al.  On the structure of tidal tails , 2008, 0804.2476.

[24]  B. Yanny,et al.  A Faint New Milky Way Satellite in Bootes , 2006, astro-ph/0604355.

[25]  Gerard Gilmore,et al.  The Kinematics, Orbit, and Survival of the Sagittarius Dwarf Spheroidal Galaxy , 1997 .

[26]  S. Majewski,et al.  A Two Micron All-Sky Survey View of the Sagittarius Dwarf Galaxy. IV. Modeling the Sagittarius Tidal Tails , 2004, astro-ph/0407566.

[27]  B. Yanny,et al.  A New Milky Way Dwarf Satellite in Canes Venatici , 2006 .

[28]  Mario Mateo,et al.  Velocity Dispersion Profiles of Seven Dwarf Spheroidal Galaxies , 2007, 0708.0010.

[29]  Massimo Ricotti,et al.  PRE-REIONIZATION FOSSILS, ULTRA-FAINT DWARFS, AND THE MISSING GALACTIC SATELLITE PROBLEM , 2008, 0806.2340.

[30]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[31]  Brant Robertson,et al.  Chemical Abundance Distributions of Galactic Halos and Their Satellite Systems in a ΛCDM Universe , 2006 .

[32]  N. F. Martin,et al.  A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies , 2007, 0705.4622.

[33]  Eva K. Grebel,et al.  The Progenitors of Dwarf Spheroidal Galaxies , 2002, astro-ph/0301025.

[34]  Michele Bellazzini,et al.  Building Up the Globular Cluster System of the Milky Way: The Contribution of the Sagittarius Galaxy , 2003 .

[35]  Heidelberg,et al.  A Comprehensive Maximum Likelihood Analysis of the Structural Properties of Faint Milky Way Satellites , 2008, 0805.2945.

[36]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[37]  B. Yanny,et al.  Cats and dogs, hair and a hero: A quintet of new milky way companions , 2006 .

[38]  B. Willman,et al.  A Pair of Boötes: A New Milky Way Satellite , 2007, 0705.1378.

[39]  Taft E. Armandroff,et al.  Abundances and Kinematics of the Globular Cluster Systems of the Galaxy and of the Sagittarius Dwarf , 1995 .

[40]  G. A. Rutledge,et al.  GALACTIC GLOBULAR CLUSTER METALLICITY SCALE FROM THE CA II TRIPLET II. RANKINGS, COMPARISONS, AND PUZZLES , 1997, astro-ph/9707068.

[41]  Lars Hernquist,et al.  Λ Cold Dark Matter, Stellar Feedback, and the Galactic Halo Abundance Pattern , 2005, astro-ph/0501398.

[42]  N. W. Evans,et al.  A photometrically and kinematically distinct core in the Sextans dwarf spheroidal galaxy , 2004 .

[43]  M. Bellazzini,et al.  High-resolution spectroscopy of RGB stars in the Sagittarius streams. I. Radial velocities and chemical abundances , 2006, astro-ph/0611070.

[44]  University of British Columbia,et al.  Feedback and the fundamental line of low-luminosity low-surface-brightness/dwarf galaxies , 2002, astro-ph/0210454.

[45]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[46]  Irvine,et al.  The Complex Chemical Abundances and Evolution of the Sagittarius Dwarf Spheroidal Galaxy , 2002 .

[47]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[48]  E. Tolstoy,et al.  The effects of age on red giant metallicities derived from the near-infrared Ca II triplet , 2003, astro-ph/0309614.

[49]  E. Tolstoy,et al.  Stellar Chemical Signatures and Hierarchical Galaxy Formation , 2004, astro-ph/0406120.

[50]  M. Correnti,et al.  Detection of a population gradient in the Sagittarius stream , 2006, astro-ph/0608513.

[51]  Judith Cohen,et al.  Palomar 12 as a Part of the Sagittarius Stream: The Evidence from Abundance Ratios , 2003, astro-ph/0311187.

[52]  Heather A. Rave,et al.  The Ghost of Sagittarius and Lumps in the Halo of the Milky Way , 2001, astro-ph/0111095.

[53]  E. D. Friel,et al.  Galactic Globular Cluster Metallicity Scale from the Ca II Triplet I. Catalog , 1997 .

[54]  Fnal,et al.  The Field of Streams: Sagittarius and its Siblings , 2006, astro-ph/0605025.

[55]  Andrew A. West,et al.  A New Milky Way Companion: Unusual Globular Cluster or Extreme Dwarf Satellite? , 2004, astro-ph/0410416.

[56]  Jeffrey D. Crane,et al.  A 2MASS ALL-SKY VIEW OF THE SAGITTARIUS DWARF GALAXY. V. VARIATION OF THE METALLICITY DISTRIBUTION FUNCTION ALONG THE SAGITTARIUS STREAM , 2007 .

[57]  V. Ripepi,et al.  Variable Stars in the Newly Discovered Milky Way Satellite in Bootes , 2006, astro-ph/0611285.

[58]  R. G. Gratton,et al.  Abundances for globular cluster giants: I. homogeneous metallicities for 24 clusters , 1996, astro-ph/9607078.

[59]  Christopher Palma,et al.  On the Distribution of Orbital Poles of Milky Way Satellites , 2001, astro-ph/0108474.

[60]  A. Katherina Vivas,et al.  VLT Spectroscopy of RR Lyrae Stars in the Sagittarius Tidal Stream , 2004, astro-ph/0410131.

[61]  M. F. Skrutskie,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms , 2003, astro-ph/0304198.

[62]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003 .

[63]  Sidney van den Bergh,et al.  The Globular Clusters of Dwarf Spheroidal Galaxies , 1998, astro-ph/9808155.

[64]  Guillermo Gonzalez,et al.  Elemental Abundances in Five Stars in M54, A Globular Cluster Associated with the Sagittarius Galaxy , 1999 .