Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers
暂无分享,去创建一个
R. M. Kolbas | Y. C. Lo | K. Y. Hsieh | N. G. Anderson | Y. J. Yang | R. Kolbas | K. Hsieh | W. Laidig | W. D. Laidig | Y. Sin | Y. Sin | Y. Lo
[1] J. H. Van Der Merwe,et al. Crystal Interfaces. Part II. Finite Overgrowths , 1963 .
[2] N. Holonyak,et al. Window‐Heat Sink Sandwich for Optical Experiments: Diamond (or Sapphire)‐Semiconductor‐Indium Sandwich , 1971 .
[3] J. W. Matthews,et al. Defects in epitaxial multilayers: III. Preparation of almost perfect multilayers , 1976 .
[4] N. Holonyak,et al. Carrier collection in a semiconductor quantum well , 1978 .
[5] Russell D. Dupuis,et al. Quantum-well heterostructure lasers , 1980 .
[6] N. Dutta,et al. Temperature dependence of threshold of InGaAsP/InP double‐heterostructure lasers and Auger recombination , 1981 .
[7] G. C. Osbourn,et al. Strained-layer superlattices from lattice mismatched materials , 1982 .
[8] N. Holonyak,et al. Stimulated emission in strained‐layer quantum‐well heterostructures , 1983 .
[9] H. Nakashima,et al. GaAlAs buried multi-quantum-well laser fabricated by diffusion induced disordering , 1984, 1983 International Electron Devices Meeting.
[10] Kunishige Oe,et al. Energy band‐gap shift with elastic strain in GaxIn1−xP epitaxial layers on (001) GaAs substrates , 1983 .
[11] C.E. Barnes,et al. InGaAs/GaAs, strained-layer superlattice (SLS), junction photodetectors, LED's, injection laser's, and FET's for optoelectronic IC applications , 1984, 1984 International Electron Devices Meeting.
[12] Y. F. Lin,et al. Strained‐layer quantum‐well injection laser , 1984 .
[13] S. Bedair,et al. A new GaAsP—InGaAs strained-layer super-lattice light-emitting diode , 1984, IEEE Electron Device Letters.
[14] N. G. Anderson,et al. Luminescence Properties of InxGa1-xAs-GaAs Strained-Layer Superlattices , 1984 .
[15] C. Peng,et al. Effects of strain and layer thickness on the growth of InxGa1−xAs–GaAs strained‐layer superlattices , 1984 .
[16] R. People,et al. Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .
[17] S. Datta,et al. Stimulated emission and laser oscillations in ZnSe‐Zn1−xMnxSe multiple quantum wells at ∼453 nm , 1985 .
[18] R. M. Biefeld,et al. Lasing transitions in GaAs/GaAs1−xPx strained‐layer superlattices with x=0.1–0.5 , 1985 .
[19] J. Woodall,et al. An In0.15Ga0.85As/GaAs pseudomorphic single quantum well HEMT , 1985, IEEE Electron Device Letters.
[20] Marzin,et al. Optical investigation of a new type of valence-band configuration in InxGa1-xAs-GaAs strained superlattices. , 1985, Physical review. B, Condensed matter.
[21] P. J. Caldwell,et al. Properties of InxGa1−xAs‐GaAs strained‐layer quantum‐well‐heterostructure injection lasers , 1985 .
[22] N. G. Anderson,et al. Dilute magnetic semiconductor (Cd1−xMnxTe) quantum well laser , 1985 .
[23] L. R. Dawson,et al. Dependence of critical layer thickness on strain for InxGa1−xAs/GaAs strained‐layer superlattices , 1985 .
[24] N. Holonyak,et al. 7 – QUANTUM-WELL HETEROSTRUCTURE LASERS , 1985 .
[25] N. G. Anderson,et al. Stimulated emission from a Cd1−xMnxTe‐CdTe multilayer structure , 1985 .
[26] Photocurrent multiplication in ion implanted lateral In0.2Ga0.8As/GaAs strained‐layer superlattice photodetectors , 1985 .
[27] G. Osbourn. Strained-layer superlattices: A brief review , 1986 .
[28] L. Esaki,et al. A bird's-eye view on the evolution of semiconductor superlattices and quantum wells , 1986 .
[29] Lester F. Eastman,et al. Graded‐index separate‐confinement InGaAs/GaAs strained‐layer quantum well laser grown by metalorganic chemical vapor deposition , 1986 .
[30] M. I. Aksun,et al. Microwave performance of a quarter-micrometer gate low-noise pseudomorphic InGaAs/AlGaAs modulation-doped field effect transistor , 1986, IEEE Electron Device Letters.
[31] Salah M. Bedair,et al. Self‐limiting mechanism in the atomic layer epitaxy of GaAs , 1986 .
[32] N. G. Anderson,et al. High‐efficiency carrier collection and stimulated emission in thin (50 Å) pseudomorphic InxGa1−xAs quantum wells , 1986 .
[33] Y. J. Yang,et al. Transverse junction stripe laser with a lateral heterobarrier by diffusion enhanced alloy disordering , 1986 .
[34] R. People,et al. Erratum: Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures [Appl. Phys. Lett. 47, 322 (1985)] , 1986 .
[35] S. Bedair,et al. Improved uniformity of epitaxial indium‐based compounds by atomic layer epitaxy , 1986 .
[36] Hadis Morkoç,et al. Optical investigation of highly strained InGaAs‐GaAs multiple quantum wells , 1987 .
[37] Y. J. Yang,et al. Continuous room‐temperature operation of an InGaAs‐GaAs‐AlGaAs strained‐layer laser , 1987 .
[38] C. Fonstad,et al. Reflection high‐energy electron diffraction intensity oscillation study of InGaAs and InAlAs on InP: Application to pseudomorphic heterostructures , 1987 .
[39] S. Bedair,et al. Lifetime test for high-current-injection strained-layer superlattice light-emitting diode , 1987, IEEE Electron Device Letters.
[40] S. Fischer,et al. Ridge waveguide injection laser with a GaInAs strained‐layer quantum well (λ=1 μm) , 1987 .
[41] W. G. Opyd,et al. Photoluminescence in strained InGaAs/GaAs superlattices , 1987 .
[42] S. Bedair,et al. Stimulated emission from ultrathin InAs/GaAs quantum well heterostructures grown by atomic layer epitaxy , 1987 .
[43] Y. J. Yang,et al. Strained layer and lattice matched transverse junction stripe quantum well lasers for continuous room temperature operation , 1988 .