Kernel-based improved discriminant analysis and its application to face recognition

Kernel discriminant analysis (KDA) is a widely used tool in feature extraction community. However, for high-dimensional multi-class tasks such as face recognition, traditional KDA algorithms have the limitation that the Fisher criterion is nonoptimal with respect to classification rate. Moreover, they suffer from the small sample size problem. This paper presents a variant of KDA called kernel-based improved discriminant analysis (KIDA), which can effectively deal with the above two problems. In the proposed framework, origin samples are projected firstly into a feature space by an implicit nonlinear mapping. After reconstructing between-class scatter matrix in the feature space by weighted schemes, the kernel method is used to obtain a modified Fisher criterion directly related to classification error. Finally, simultaneous diagonalization technique is employed to find lower-dimensional nonlinear features with significant discriminant power. Experiments on face recognition task show that the proposed method is superior to the traditional KDA and LDA.

[1]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[2]  Gunnar Rätsch,et al.  Constructing Descriptive and Discriminative Nonlinear Features: Rayleigh Coefficients in Kernel Feature Spaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Rama Chellappa,et al.  Discriminant Analysis for Recognition of Human Face Images (Invited Paper) , 1997, AVBPA.

[4]  Konstantinos N. Plataniotis,et al.  Face recognition using LDA-based algorithms , 2003, IEEE Trans. Neural Networks.

[5]  Yuntao Qian,et al.  Face recognition using a kernel fractional-step discriminant analysis algorithm , 2007, Pattern Recognit..

[6]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[7]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[8]  Ming-Hsuan Yang,et al.  Kernel Eigenfaces vs. Kernel Fisherfaces: Face recognition using kernel methods , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[9]  Jing-Yu Yang,et al.  Optimal discriminant plane for a small number of samples and design method of classifier on the plane , 1991, Pattern Recognit..

[10]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[11]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[12]  Konstantinos N. Plataniotis,et al.  Face recognition using kernel direct discriminant analysis algorithms , 2003, IEEE Trans. Neural Networks.

[13]  Xin Yang,et al.  Improved-LDA based face recognition using both facial global and local information , 2006, Pattern Recognit. Lett..

[14]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Chengjun Liu,et al.  Robust coding schemes for indexing and retrieval from large face databases , 2000, IEEE Trans. Image Process..

[16]  Jian Yang,et al.  Essence of kernel Fisher discriminant: KPCA plus LDA , 2004, Pattern Recognit..

[17]  Konstantinos N. Plataniotis,et al.  Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition , 2005, Pattern Recognit. Lett..

[18]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Sen Jia,et al.  A kernel fractional-step nonlinear discriminant analysis for pattern recognition , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[20]  Ravi Kothari,et al.  Fractional-Step Dimensionality Reduction , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[22]  Jian Yang,et al.  KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[24]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[25]  Hua Yu,et al.  A direct LDA algorithm for high-dimensional data - with application to face recognition , 2001, Pattern Recognit..

[26]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Robert P. W. Duin,et al.  Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Junshui Ma Function replacement vs. kernel trick , 2003, Neurocomputing.