Effect of uniaxial strain on the structural, electronic and elastic properties of orthorhombic BiMnO3

We study the elastic constants and electronic properties of orthorhombic BiMnO3 under uniaxial strain along the c-axis using the first-principles method. It is found that, beyond the range −0.025 < < 0.055, the predicted stiffness constants cij cannot demand the Born stability criteria and the compliance constant s44 shows abrupt changes, which accompany phase transition. In addition, the results for magnetism moments and polycrystalline properties are also reported. Additionally, under compressive strain, a band gap transition from the indirect to the direct occurs within −0.019 < < −0.018. Furthermore, the response of the band gap of orthorhombic BiMnO3 to uniaxial strain is studied.

[1]  R. Seshadri,et al.  Anti-polarity in ideal BiMnO3. , 2007, Journal of the American Chemical Society.

[2]  K. Kimoto,et al.  Origin of the monoclinic-to-monoclinic phase transition and evidence for the centrosymmetric crystal structure of BiMnO3. , 2007, Journal of the American Chemical Society.

[3]  Y. Syono,et al.  Magnetic and Electrical Properties of Bi1−xSrxMnO3: Hole-Doping Effect on Ferromagnetic Perovskite BiMnO3 , 1997 .

[4]  Andrea Migliori,et al.  Room Temperature Polymorphism in Metastable BiMnO3 Prepared by High-Pressure Synthesis , 2005 .

[5]  Xiaojuan Liu,et al.  Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles , 2007 .

[6]  T. Oguchi,et al.  First-principles study on the electronic structure of bismuth transition-metal oxides , 2004 .

[7]  G. Smolensky,et al.  New ferroelectrics of complex composition. IV , 1961 .

[8]  T. Kolodiazhnyi,et al.  Synthesis and properties of oxygen non-stoichiometric BiMnO3 , 2009 .

[9]  E. Takayama-Muromachi,et al.  Local Crystal Structure of Multiferroic System BiMnO3 by Atomic Pair Distribution Function Analysis , 2007 .

[10]  N. A. Grigoryan,et al.  X‐Ray Diffraction and Magnetic Studies of Solid Solutions Bi1−xCaxMnO3 , 1967 .

[11]  Shun-Li Shang,et al.  Elastic properties of cubic and rhombohedralBiFeO3from first-principles calculations , 2009 .

[12]  Martin Ostoja-Starzewski,et al.  Universal elastic anisotropy index. , 2008, Physical review letters.

[13]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[14]  V. Gopalan,et al.  Tunable band gap in Bi(Fe1−xMnx)O3 films , 2010 .

[15]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[16]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[17]  E. Takayama-Muromachi,et al.  Effects of isovalent substitution in the manganese sublattice on magnetic, thermal, and structural properties of BiMnO3: BiMn1-xMxO3 (M=Al, Sc, Cr, Fe, Ga; 0, 2007, Inorganic chemistry.

[18]  K. Ohoyama,et al.  Structure determination of ferromagnetic perovskite BiMnO3 , 1999 .

[19]  Y. Ohishi,et al.  Peculiar high-pressure behavior of BiMnO3. , 2009, Inorganic chemistry.

[20]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[21]  C. Rao,et al.  Orbital ordering as the determinant for ferromagnetism in biferroic BiMnO 3 , 2002 .

[22]  Resonant x-ray scattering study on multiferroic BiMnO 3 , 2006, cond-mat/0601506.

[23]  Xiaoqing Pan,et al.  Epitaxial growth and properties of metastable BiMnO3 thin films , 2004 .

[24]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[25]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[26]  F. W. Vahldiek,et al.  Anisotropy in Single-Crystal Refractory Compounds , 1968 .

[27]  F. Bolzoni,et al.  High-Temperature Polymorphism in Metastable BiMnO3. , 2006 .

[28]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[29]  K. Kimoto,et al.  Crystal symmetry of BiMnO3: Electron diffraction study , 2008 .

[30]  Shun-Li Shang,et al.  Temperature-dependent elastic stiffness constants of α- and θ-Al2O3 from first-principles calculations , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  M. Kawai,et al.  Synthesis and magnetic property of the perovskite Bi1−xSrxMnO3 thin film , 2000 .

[32]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[33]  Yasuhiro Tokura,et al.  Magnetocapacitance effect in multiferroic BiMnO 3 , 2003 .

[34]  Y. Syono,et al.  Magnetic Properties and Crystal Distortions of BiMnO3 and BiCrO3 , 1968 .

[35]  J. Son,et al.  Writing polarization bits on the multiferroic BiMnO3 thin film using Kelvin probe force microscope , 2004 .

[36]  J. Rodríguez-Carvajal,et al.  Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO 3 , 1998 .

[37]  E. Janzén,et al.  Accurate defect levels obtained from the HSE06 range-separated hybrid functional , 2010 .

[38]  M. Mansori,et al.  High-Temperature XRD and DTA Studies of BiMnO3Perovskite , 1999 .

[39]  F. Bolzoni,et al.  High-Temperature Polymorphism in Metastable BiMnO3 , 2005 .

[40]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .