Issues in the numerical modelling of positive ion extraction

Abstract The wide application of ion sources requires the optimization of the ion optics to achieve a balance between the performance, life cycle and size. A 2D hybrid model is represented to simulate the ion optics for positive ion extraction where adaptive particle management and parallel computing are considered. Then, misunderstandings and inconsistencies in the previous numerical models of positive ion extraction are discussed, and new methods for determining the key simulation parameters are proposed. The local model of positive ion extraction is found to be unable to form a presheath and simulate a Bohm sheath self-consistently, which indicates that the upstream surface of the numerical domain should be the sheath edge and the simulation parameters should satisfy the sheath characteristics. Accordingly, the methods for determining the length of the upstream domain, the potential of the upstream surface and the injection of ions are discussed, as well as the effects of key parameters on the simulation results. Further simulations demonstrate that the thermal velocities of ions can affect the perveance condition of the ion beamlet. By comparing the simulation results with earlier experimental results, it is shown that our 2D model can describe the beam divergence characteristics correctly and predict the perveance limit well with high computational efficiency.

[1]  Combined PIC MCC approach for fast simulation of a radio frequency discharge at a low gas pressure , 2003, physics/0308071.

[2]  Franck Assous,et al.  A new method for coalescing particles in PIC codes , 2003 .

[3]  Jerold W. Emhoff Simulation of ion optics using particle-in-cell and treecode methods , 2005 .

[4]  H. Koizumi,et al.  Three-dimensional particle-in-cell simulation of a miniature plasma source for a microwave discharge ion thruster , 2014 .

[5]  Markus M. Becker,et al.  PIC/MCC simulation of capacitively coupled discharges: Effect of particle management and integration , 2016, Comput. Phys. Commun..

[6]  J. Schulze,et al.  Ionization by bulk heating of electrons in capacitive radio frequency atmospheric pressure microplasmas , 2012, 1208.6519.

[7]  Jannis Teunissen,et al.  Controlling the weights of simulation particles: adaptive particle management using k-d trees , 2013, J. Comput. Phys..

[8]  N. Sternberg,et al.  The Bohm Plasma-Sheath Model and the Bohm Criterion Revisited , 2007, IEEE Transactions on Plasma Science.

[9]  R. Merlino Understanding Langmuir probe current-voltage characteristics , 2007 .

[10]  Ma Jin-xiu,et al.  Experimental studies of plasma sheath near meshes of different transmissivity , 2010 .

[11]  Wilhelmus M. Ruyten,et al.  Density-conserving shape factors for particle simulations in cylindrical and spherical coordinates , 1993 .

[12]  Iain D. Boyd,et al.  Modeling of the plasma jet of a stationary plasma thruster , 2002 .

[13]  D. Winklehner Ion beam extraction from electron cyclotron resonance ion sources and the subsequent low energy beam transport , 2013 .

[14]  I. Katz,et al.  Fundamentals of Electric Propulsion: Ion and Hall Thrusters , 2008 .

[15]  K. Riemann,et al.  The Bohm criterion and sheath formation , 1991 .

[16]  R. Franklin The plasma–sheath boundary region , 2003 .

[17]  Yahong Xie,et al.  Beam optics study of a negative ion source for neutral beam injection application at ASIPP , 2017 .

[18]  I. Gomez-Morilla,et al.  First-order ion-optics calculations for an Accelerator Mass Spectrometry system using SRIM and S3M , 2012 .

[19]  R. Franklin Where is the ‘sheath edge’? , 2004 .

[20]  M. Turner,et al.  Simulation benchmarks for low-pressure plasmas: Capacitive discharges , 2012, 1211.5246.

[21]  Richard D. Sydora,et al.  Electromagnetic particle-in-cell simulations on magnetic reconnection with adaptive mesh refinement , 2008, Comput. Phys. Commun..

[22]  Xiaoming He,et al.  Three-dimensional IFE-PIC numerical simulation of background pressure's effect on accelerator grid impingement current for ion optics , 2015 .

[23]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[24]  Numerical Study of Beam Extraction Phenomena in an Ion Thruster , 2001 .

[25]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[26]  David Tskhakaya,et al.  The Particle‐In‐Cell Method , 2007 .

[27]  T. Lafleur,et al.  Radio-frequency biasing of ion acceleration grids , 2018, Plasma Sources Science and Technology.

[28]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[29]  Anita Sengupta,et al.  A high power ion thruster for deep space missions. , 2012, The Review of scientific instruments.

[30]  Paul J. Wilbur,et al.  Ion extraction from a plasma , 1980 .

[31]  Paul J. Wilbur,et al.  Numerical Simulation of Ion Beam Optics for Multiple-Grid Systems , 2003 .

[32]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[33]  Olivier Chanrion,et al.  A PIC-MCC code for simulation of streamer propagation in air , 2008, J. Comput. Phys..

[34]  V. Nikitin,et al.  Three-dimensional analysis of ion optics with misalignments of apertures , 2016 .

[35]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[36]  T. Masek Plasma properties and performance of mercury ion thrusters , 1969 .

[37]  Raed Kafafy,et al.  Whole Ion Optics Gridlet Simulations Using a Hybrid-Grid Immersed-Finite-Element Particle-in-Cell Code , 2007 .

[38]  H. Koizumi,et al.  Numerical simulation of full-aperture-pair ion optics in a miniature ion thruster , 2018 .