Direct observation of metastable face-centered cubic Sb2Te3 crystal

Although phase change memory technology has developed drastically in the past two decades, the cognition of the key switching materials still ignores an important member, the face-centered cubic Sb2Te3. Apart from the well-known equilibrium hexagonal Sb2Te3 crystal, we prove the metastable face-centered cubic Sb2Te3 phase does exist. Such a metastable crystal contains a large concentration of vacancies randomly occupying the cationic lattice sites. The face-centered cubic to hexagonal phase transformation of Sb2Te3, accompanied by vacancy aggregation, occurs at a quite lower temperature compared to that of Ge2Sb2Te5 alloy. We prove that the covalent-like bonds prevail in the metastable Sb2Te3 crystal, deviating from the ideal resonant features. If a proper doping technique is adopted, the metastable Sb2Te3 phase could be promising for realizing reversibly swift and low-energy phase change memory applications. Our study may offer a new insight into commercialized Ge–Sb–Te systems and help in the design of novel phase change materials to boost the performances of the phase change memory device.

[1]  Wei Zhang,et al.  Role of vacancies in metal-insulator transitions of crystalline phase-change materials. , 2012, Nature materials.

[2]  Rajeev Ahuja,et al.  Structure of phase change materials for data storage. , 2006, Physical review letters.

[3]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[4]  Songlin Feng,et al.  One order of magnitude faster phase change at reduced power in Ti-Sb-Te , 2014, Nature Communications.

[5]  Qi Wang,et al.  A 20nm 1.8V 8Gb PRAM with 40MB/s program bandwidth , 2012, 2012 IEEE International Solid-State Circuits Conference.

[6]  Valerio Pruneri,et al.  Time-domain separation of optical properties from structural transitions in resonantly bonded materials. , 2014, Nature materials.

[7]  Duane Mills,et al.  A 45nm 1Gb 1.8V phase-change memory , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[8]  M. Salinga,et al.  A map for phase-change materials. , 2008, Nature materials.

[9]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[10]  V. Weidenhof,et al.  Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements , 2000 .

[11]  Börje Johansson,et al.  Formation of large voids in the amorphous phase-change memory Ge2Sb2Te5 alloy. , 2009, Physical review letters.

[12]  Bomy Chen,et al.  Effects of Ge doping on the properties of Sb2Te3 phase-change thin films , 2007 .

[13]  J. Spence High-Resolution Electron Microscopy , 2003 .

[14]  Michele Parrinello,et al.  First-principles study of liquid and amorphous Sb 2 Te 3 , 2010 .

[15]  H. Mao,et al.  Peierls distortion mediated reversible phase transition in GeTe under pressure , 2012, Proceedings of the National Academy of Sciences.

[16]  A. Walsh,et al.  Insights into the structure of the stable and metastable ( GeTe ) m ( Sb 2 Te 3 ) n compounds , 2009 .

[17]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[18]  Stanford R. Ovshinsky,et al.  Vacancy-mediated three-center four-electron bonds in GeTe-Sb 2 Te 3 phase-change memory alloys , 2013 .

[19]  David B. Williams,et al.  Transmission Electron Microscopy: A Textbook for Materials Science , 1996 .

[20]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[21]  D. Adler,et al.  Valence-Alternation Model for Localized Gap States in Lone-Pair Semiconductors , 1976 .

[22]  J. Tominaga,et al.  Excitation-Assisted Disordering of GeTe and Related Solids with Resonant Bonding , 2014 .

[23]  J. Tominaga,et al.  Why Phase-Change Media Are Fast and Stable: A New Approach to an Old Problem , 2005 .

[24]  Matthias Wuttig,et al.  Phase change materials for non-volatile electronic memories , 2008 .

[25]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[26]  Matthias Wuttig,et al.  Towards a universal memory? , 2005, Nature materials.

[27]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[28]  P. Hohenberg,et al.  Inhomogeneous electron gas , 1964 .

[29]  Sumio Hosaka,et al.  Characterization of nitrogen-doped Sb2Te3 films and their application to phase-change memory , 2007 .

[30]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[31]  In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5 , 2004 .

[32]  H-S Philip Wong,et al.  Memory leads the way to better computing. , 2015, Nature nanotechnology.

[33]  Bo Liu,et al.  Si–Sb–Te materials for phase change memory applications , 2011, Nanotechnology.

[34]  E. Ma,et al.  Nature of atomic bonding and atomic structure in the phase-change Ge2Sb2Te5 glass. , 2009, Physical review letters.

[35]  J. Tominaga,et al.  p‐Type conductivity of GeTe: The role of lone‐pair electrons , 2012 .

[36]  H. L. Lung,et al.  A high performance phase change memory with fast switching speed and high temperature retention by engineering the GexSbyTez phase change material , 2011, 2011 International Electron Devices Meeting.

[37]  Hong‐Bo Sun,et al.  Understanding phase-change behaviors of carbon-doped Ge₂Sb₂Te₅ for phase-change memory application. , 2014, ACS applied materials & interfaces.