A snapshot on galaxy evolution occurring in the Great Wall: the role of Nurture at z = 0

With the aim of quantifying the contribution of the environment on the evolution of galaxies at z = 0 we have used the DR7 catalogue of the Sloan Digital Sky Survey (SDSS) to reconstruct the 3-D distribution of 4132 galaxies in 420 square degrees of the Coma supercluster, containing two rich clusters (Coma and A1367), several groups, and many filamentary structures belonging to the “Great Wall”, at the approximate distance of 100 Mpc. At this distance the galaxy census is complete to Mi = −17. 5m ag, i.e.∼4 mag fainter than M ∗ . The morphological classification of galaxies into early- (ellipticals) and late-types (spirals) was carried out by inspection of individual SDSS images and spectra. The density around each galaxy was determined in cylinders of 1 Mpc radius and 1000 km s −1 half length. The color-luminosity relation was derived for galaxies in bins morphological type and in four thresholds of galaxy densitycontrast, ranging from δ1,1000 ≤ 0( UL= the cosmic web); 0 20 (UH = the cluster’s cores). The fraction of early-type galaxies increases with the log of the over-density. A well defined “red sequence” composed of early-type galaxies exists in all environments at high luminosity, but it lacks of low luminosity (dwarf) galaxies in the lowest density environment. Conversely low luminosity isolated galaxies are predominantly of late-type. In other words the low luminosity end of the distribution is dominated by red dE galaxies in clusters and groups and by dwarf blue amorphous systems in the lowest density regions. At z = 0 we find evidence for strong evolution induced by the environment (Nurture). Transformations take place mostly at low luminosity when star forming dwarf galaxies inhabiting low density environments migrate into amorphous passive dwarf ellipticals in their infall into denser regions. The mechanism involves suppression of the star formation due to gas stripping, without significant mass growth, as proposed by Boselli et al. (2008a, ApJ, 674, 742). This process is more efficient and fast in ambients of increasing density. In the highest density environments (around clusters) the truncation of the star formation happens fast enough (few 100 Myr) to produce the signature of post-star-burst in galaxy spectra. PSB galaxies, that are in fact found significantly clustered around the largest dynamical units, represent the remnants of star forming isolated galaxies that had their star formation violently suppressed during their infall in clusters in the last 0.5–1.5 Gyrs, and the progenitors of future dEs.

[1]  Daejeon,et al.  The nature of the Sloan Digital Sky Survey galaxies in various classes based on morphology, colour and spectral features – III. Environments , 2009, 0911.4386.

[2]  D. Thompson,et al.  Tracking the impact of environment on the galaxy stellar mass function up to z ~ 1 in the 10 k zCOSMOS sample , 2009, 0907.0013.

[3]  L. Cortese,et al.  Evolutionary paths to and from the red sequence: star formation and H i properties of transition galaxies at z∼ 0 , 2009, 0908.3564.

[4]  M. Blanton,et al.  Physical properties and environments of nearby galaxies , 2009, 0908.3017.

[5]  K. Bekki Ram-pressure stripping of halo gas in disc galaxies: implications for galactic star formation in different environments , 2009, 0907.4409.

[6]  B. Garilli,et al.  The zCOSMOS redshift survey: the role of environment and stellar mass in shaping the rise of the morphology-density relation from z ~ 1 , 2009, 0906.4556.

[7]  L. Cortese,et al.  The migration of nearby spirals from the blue to red sequence: AGN feedback or environmental effects? , 2009, 0903.3574.

[8]  F. Fontanot,et al.  The many manifestations of downsizing: hierarchical galaxy formation models confront observations , 2009, 0901.1130.

[9]  S. Bamford,et al.  THE ENVIRONMENTS OF STARBURST AND POST-STARBURST GALAXIES AT z = 0.4–0.8 , 2008, 0811.0252.

[10]  G. Gavazzi,et al.  The ultraviolet luminosity function and star formation rate of the Coma cluster , 2008, 0809.0972.

[11]  G. Gavazzi,et al.  The origin of the mue-MB and Kormendy relations in dwarf elliptical galaxies , 2008, 0807.3282.

[12]  J. Moustakas,et al.  The Late Stellar Assembly of Massive Cluster Galaxies via Major Merging , 2008, 0806.4387.

[13]  Alexander S. Szalay,et al.  Galaxy Zoo: the dependence of morphology and colour on environment , 2008, 0805.2612.

[14]  S. Bamford,et al.  The Relation between Star Formation, Morphology, and Local Density in High-Redshift Clusters and Groups , 2008, 0805.1145.

[15]  C. Lintott,et al.  Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.

[16]  Daniel J. Eisenstein,et al.  Luminosity Function Constraints on the Evolution of Massive Red Galaxies since z ~ 0.9 , 2008, 0804.4516.

[17]  Edinburgh,et al.  The evolution of the brightest cluster galaxies since z∼ 1 from the ESO Distant Cluster Survey (EDisCS) , 2008, 0804.2152.

[18]  G. Gavazzi,et al.  The Origin of Dwarf Ellipticals in the Virgo Cluster , 2008, 0801.2113.

[19]  P. Merluzzi,et al.  The SDSS-GALEX viewpoint of the truncated red sequence in field environments at z 0 , 2007, 0707.2361.

[20]  G. Busarello,et al.  The Different Physical Mechanisms that Drive the Star-Formation Histories of Giant and Dwarf Galaxies , 2007, 0707.1262.

[21]  M. Fukugita,et al.  Spatial Variations of Galaxy Number Counts in the Sloan Digital Sky Survey. II. Test of Galactic Extinction in High-Extinction Regions , 2007, 0706.0369.

[22]  S. Tremaine,et al.  Selection Bias in Observing the Cosmological Evolution of the M•-σ and M•-L Relationships , 2007, 0705.4103.

[23]  E. Bell,et al.  Star Formation and the Growth of Stellar Mass , 2007, 0704.3077.

[24]  D. Thompson,et al.  The Redshift Evolution of Early-Type Galaxies in COSMOS: Do Massive Early-Type Galaxies Form by Dry Mergers? , 2007, astro-ph/0701746.

[25]  D. Thompson,et al.  The Cosmic Evolution Survey (COSMOS): The Morphological Content and Environmental Dependence of the Galaxy Color-Magnitude Relation at z ~ 0.7 , 2007, astro-ph/0701483.

[26]  E. Grebel,et al.  Virgo Cluster Early-Type Dwarf Galaxies with the Sloan Digital Sky Survey. III. Subpopulations: Distributions, Shapes, Origins , 2007, astro-ph/0701429.

[27]  M. Blanton,et al.  What Aspects of Galaxy Environment Matter? , 2006, astro-ph/0608353.

[28]  B. Milliard,et al.  The GALEX Ultraviolet Atlas of Nearby Galaxies , 2006, astro-ph/0606440.

[29]  R. Pelló,et al.  The build-up of the colour-magnitude relation in galaxy clusters since z ~ 0.8 , 2006, astro-ph/0610373.

[30]  M. Bernardi,et al.  Selection Bias in the M•-σ and M•-L Correlations and Its Consequences , 2006, astro-ph/0609300.

[31]  Monteporzio,et al.  The Galaxy Mass Function up to z=4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies ⋆ , 2006, astro-ph/0609068.

[32]  B. Madore,et al.  The Fate of Spiral Galaxies in Clusters: The Star Formation History of the Anemic Virgo Cluster Galaxy NGC 4569 , 2006, astro-ph/0609020.

[33]  S. Bamford,et al.  Galaxy bimodality versus stellar mass and environment , 2006, astro-ph/0607648.

[34]  G. Busarello,et al.  The Different Environmental Dependencies of Star Formation for Giant and Dwarf Galaxies , 2006, astro-ph/0606521.

[35]  H. Muriel,et al.  Groups of galaxies: relationship between environment and galaxy properties , 2006, astro-ph/0605264.

[36]  G. Gavazzi,et al.  Environmental Effects on Late‐Type Galaxies in Nearby Clusters , 2006, astro-ph/0601108.

[37]  G. Kauffmann,et al.  The formation history of elliptical galaxies , 2005, astro-ph/0509725.

[38]  A. Biviano,et al.  The build-up of the Coma cluster by infalling substructures , 2005, astro-ph/0507542.

[39]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[40]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[41]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[42]  Near-infrared imaging of 222 nearby Hδ-strong galaxies from the Sloan Digital Sky Survey , 2005, astro-ph/0503639.

[43]  A. Finoguenov,et al.  XMM-Newton and Gemini Observations of Eight RASSCALS Galaxy Groups , 2005, astro-ph/0502362.

[44]  J. Brinkmann,et al.  Systematic errors in weak lensing: application to SDSS galaxy-galaxy weak lensing , 2005, astro-ph/0501201.

[45]  J. Brinkmann,et al.  The Properties and Luminosity Function of Extremely Low Luminosity Galaxies , 2004, astro-ph/0410164.

[46]  J. Brinkmann,et al.  NYU-VAGC: a galaxy catalog based on new public surveys , 2004, astro-ph/0410166.

[47]  R. Nichol,et al.  The Bimodal Galaxy Color Distribution: Dependence on Luminosity and Environment , 2004, astro-ph/0406266.

[48]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[49]  R. Nichol,et al.  Galaxy ecology: groups and low-density environments in the SDSS and 2dFGRS , 2003, astro-ph/0311379.

[50]  S. Okamura,et al.  A Comparison of the Galaxy Populations in the Coma and Distant Clusters: The Evolution of k+a Galaxies and the Role of the Intracluster Medium , 2003, astro-ph/0309449.

[51]  Neta A. Bahcall,et al.  The Dependence on Environment of the Color-Magnitude Relation of Galaxies , 2003, astro-ph/0307336.

[52]  J. Brinkmann,et al.  Selection and Photometric Properties of K+A Galaxies , 2003, astro-ph/0307074.

[53]  J. Brinkmann,et al.  Relationship between Environment and the Broadband Optical Properties of Galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0310453.

[54]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[55]  S. Okamura,et al.  A Photometric and Spectroscopic Study of Dwarf and Giant Galaxies in the Coma Cluster. IV. The Luminosity Function , 2003, astro-ph/0301047.

[56]  G. Gavazzi,et al.  Introducing GOLDMine: A new galaxy database on the WEB , 2002, astro-ph/0212257.

[57]  Royal Observatory of Edinburgh,et al.  The FORS Deep Field: Field selection, photometric observations and photometric catalog , , 2002, astro-ph/0211044.

[58]  Garching,et al.  The dynamical state of the Coma cluster with XMM-Newton ? , 2002, astro-ph/0212432.

[59]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[60]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[61]  G. Gavazzi,et al.  1.65 Micron (H Band) Surface Photometry of Galaxies. VI. The History of Star Formation in Normal Late-Type Galaxies , 2000, astro-ph/0011016.

[62]  G. Gavazzi,et al.  The 3-D structure of the Coma–A 1367 supercluster: Optical spectroscopy of 102 galaxies , 1999 .

[63]  Alan Dressler,et al.  The Star Formation Histories of Galaxies in Distant Clusters , 1999, astro-ph/9901264.

[64]  Alan Dressler,et al.  A Spectroscopic Catalog of 10 Distant Rich Clusters of Galaxies , 1999, astro-ph/9901263.

[65]  G. Lake,et al.  On the survival and destruction of spiral galaxies in clusters , 1998, astro-ph/9811127.

[66]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[67]  S. Shectman,et al.  The environment of "E+A" galaxies , 1995, astro-ph/9512058.

[68]  J. Burns,et al.  ROSAT Observations of Five Poor Galaxy Clusters with Extended Radio Sources , 1995 .

[69]  Ray M. Sharples,et al.  Star formation in early-type galaxies in the Coma cluster , 1993 .

[70]  G. Gavazzi,et al.  21 centimeter study of spiral galaxies in clusters. III: Neutral gas content, star formation, and radio continuum properties , 1993 .

[71]  J. Huchra,et al.  The distribution of galaxies within the 'Great Wall' , 1992 .

[72]  G. Gavazzi 21 Centimeter Study of Spiral Galaxies in the Coma Supercluster. II. Evidence for Ongoing Gas Stripping in Five Cluster Galaxies , 1989 .

[73]  W. Couch,et al.  A spectroscopic study of three rich galaxy clusters at z = 0.31 , 1987 .

[74]  G. Gavazzi 21 centimeter study of spiral galaxies in the Coma supercluster , 1987 .

[75]  W. Jaffe,et al.  Radio-continuum survey of the Coma/A1367 supercluster. IV - 1.4 GHz observations of CGCG galaxies , 1986 .

[76]  E. Valentijn,et al.  Radio continuum survey of the Coma/A1367 supercluster : I - 610 MHz observations of CGCG galaxies in four groups , 1986 .

[77]  J. Huchra,et al.  A Slice of the Universe , 1985 .

[78]  James E. Gunn,et al.  Spectroscopy of galaxies in distant clusters. II: The population of the 3C 295 cluster , 1983 .

[79]  R. Giovanelli,et al.  21 centimeter observations of supercluster galaxies: The bridge between Coma and A1367 , 1983 .

[80]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[81]  Laird A. Thompson,et al.  The COMA/A1367 Supercluster and Its Environs , 1978 .

[82]  J. J. Moré,et al.  Levenberg--Marquardt algorithm: implementation and theory , 1977 .

[83]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .