Mosquito stage, transmission blocking vaccines for malaria

Purpose of review This review highlights progress made in the development of vaccines aimed at the stages of malaria parasites found in mosquitoes that block the transmission of malaria within a community. Recent findings Substantial progress has been made on the production and characterization of the leading candidates P25 and P28 from Plasmodium falciparum and P. vivax. Immunogenicity data have been obtained for P25 in humans that showed significant transmission blocking activity and further advances in formulation should boost this activity. The completion of the malaria genome and ongoing proteomics identified further candidate antigens now entering development. Summary Recent advances increase confidence that a mosquito stage transmission blocking malaria vaccine will be feasible.

[1]  H. Stunnenberg,et al.  Epitope Analysis of the Malaria Surface Antigen Pfs48/45 Identifies a Subdomain That Elicits Transmission Blocking Antibodies* , 2007, Journal of Biological Chemistry.

[2]  J. Martínez-Barnetche,et al.  The surface protein Pvs25 of Plasmodium vivax ookinetes interacts with calreticulin on the midgut apical surface of the malaria vector Anopheles albimanus. , 2007, Molecular and biochemical parasitology.

[3]  Hong Zhou,et al.  Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates. , 2007, Vaccine.

[4]  R. Sauerwein Malaria transmission-blocking vaccines: the bonus of effective malaria control. , 2007, Microbes and infection.

[5]  R. Sinden,et al.  Female Inheritance of Malarial lap Genes Is Essential for Mosquito Transmission , 2007, PLoS pathogens.

[6]  A. Warburg,et al.  Laminin and a Plasmodium ookinete surface protein inhibit melanotic encapsulation of Sephadex beads in the hemocoel of mosquitoes. , 2007, Microbes and infection.

[7]  R. Sinden,et al.  The use of transgenic Plasmodium berghei expressing the Plasmodium vivax antigen P25 to determine the transmission-blocking activity of sera from malaria vaccine trials. , 2007, Vaccine.

[8]  J. Shiloach,et al.  Long-lasting and transmission-blocking activity of antibodies to Plasmodium falciparum elicited in mice by protein conjugates of Pfs25 , 2007, Proceedings of the National Academy of Sciences.

[9]  J. Shiver,et al.  Sustained high-titer antibody responses induced by conjugating a malarial vaccine candidate to outer-membrane protein complex , 2006, Proceedings of the National Academy of Sciences.

[10]  C. Janse,et al.  Pfs47, paralog of the male fertility factor Pfs48/45, is a female specific surface protein in Plasmodium falciparum. , 2006, Molecular and biochemical parasitology.

[11]  J. Sattabongkot,et al.  The Plasmodium vivax homolog of the ookinete adhesive micronemal protein, CTRP. , 2006, Parasitology international.

[12]  K. Williamson,et al.  Malaria transmission‐blocking antigen, Pfs230, mediates human red blood cell binding to exflagellating male parasites and oocyst production , 2006, Molecular microbiology.

[13]  J. Richards,et al.  Limited polymorphism in Plasmodium falciparum ookinete surface antigen, von Willebrand factor A domain-related protein from clinical isolates , 2006, Malaria Journal.

[14]  T. Bousema,et al.  (Sub)microscopic Plasmodium falciparum gametocytaemia in Kenyan children after treatment with sulphadoxine-pyrimethamine monotherapy or in combination with artesunate. , 2006, International journal for parasitology.

[15]  C. Drakeley,et al.  Sexual-stage antibody responses to P. falciparum in endemic populations. , 2006, Current molecular medicine.

[16]  H. Su,et al.  The essential mosquito-stage P25 and P28 proteins from Plasmodium form tile-like triangular prisms , 2006, Nature Structural &Molecular Biology.

[17]  Siarhei Maslau,et al.  Structural models for the protein family characterized by gamete surface protein Pfs230 of Plasmodium falciparum. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  K. Patra,et al.  An anti-Chitinase malaria transmission-blocking single-chain antibody as an effector molecule for creating a Plasmodium falciparum-refractory mosquito. , 2005, The Journal of infectious diseases.

[19]  Yingyao Zhou,et al.  The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. , 2005, Molecular and biochemical parasitology.

[20]  J. Sattabongkot,et al.  Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria. , 2005, Vaccine.

[21]  C. Louis,et al.  The Anopheles gambiae gamma1 laminin directly binds the Plasmodium berghei circumsporozoite- and TRAP-related protein (CTRP). , 2005, Molecular and biochemical parasitology.

[22]  John R Yates,et al.  A Comprehensive Survey of the Plasmodium Life Cycle by Genomic, Transcriptomic, and Proteomic Analyses , 2005, Science.

[23]  T. Matsuyama,et al.  Essential role of membrane-attack protein in malarial transmission to mosquito host. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  T. Tsuboi,et al.  Plasmodium Ookinete-secreted Proteins Secreted through a Common Micronemal Pathway Are Targets of Blocking Malaria Transmission* , 2004, Journal of Biological Chemistry.

[25]  J. Sattabongkot,et al.  Blocking of transmission to mosquitoes by antibody to Plasmodium vivax malaria vaccine candidates Pvs25 and Pvs28 despite antigenic polymorphism in field isolates. , 2003, The American journal of tropical medicine and hygiene.

[26]  R. Sinden,et al.  SOAP, a novel malaria ookinete protein involved in mosquito midgut invasion and oocyst development , 2003, Molecular microbiology.

[27]  T. Tsuboi,et al.  Transmission-blocking vaccine of vivax malaria. , 2003, Parasitology international.

[28]  R. Carter,et al.  Spatial simulation of malaria transmission and its control by malaria transmission blocking vaccination. , 2002, International journal for parasitology.

[29]  M. Grainger,et al.  PSLAP, a protein with multiple adhesive motifs, is expressed in Plasmodium falciparum gametocytes. , 2002, Molecular and biochemical parasitology.

[30]  A. Kurosky,et al.  Monoclonal Antibody against the Plasmodium falciparum Chitinase, PfCHT1, Recognizes a Malaria Transmission-Blocking Epitope in Plasmodium gallinaceum Ookinetes Unrelated to the Chitinase PgCHT1 , 2002, Infection and Immunity.

[31]  J. Vinetz,et al.  Identification of Novel Plasmodium gallinaceum Zygote- and Ookinete-Expressed Proteins as Targets for Blocking Malaria Transmission , 2002, Infection and Immunity.

[32]  B. Nahlen,et al.  Polymorphism in the gene encoding the Pfs48/45 antigen of Plasmodium falciparum. XI. Asembo Bay Cohort Project. , 2002, Molecular and biochemical parasitology.

[33]  A. Saul,et al.  Antibodies to Plasmodium vivax transmission-blocking vaccine candidate antigens Pvs25 and Pvs28 do not show synergism. , 2001, Vaccine.

[34]  R. Sinden,et al.  Interaction between Host Complement and Mosquito-Midgut-Stage Plasmodium berghei , 2001, Infection and Immunity.

[35]  R. Sinden,et al.  P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions , 2001, The EMBO journal.

[36]  T. Tsuboi,et al.  von Willebrand Factor A domain-related protein, a novel microneme protein of the malaria ookinete highly conserved throughout Plasmodium parasites. , 2001, Molecular and biochemical parasitology.

[37]  D. Conway,et al.  Strong diversifying selection on domains of the Plasmodium falciparum apical membrane antigen 1 gene. , 2001, Genetics.

[38]  C. Claudianos,et al.  Knockout of the Rodent Malaria Parasite Chitinase PbCHT1 Reduces Infectivity to Mosquitoes , 2001, Infection and Immunity.

[39]  T. Tsuboi,et al.  Presence of three distinct ookinete surface protein genes, Pos25, Pos28-1, and Pos28-2, in Plasmodium ovale. , 2001, Molecular and biochemical parasitology.

[40]  H. Stunnenberg,et al.  A Central Role for P48/45 in Malaria Parasite Male Gamete Fertility , 2001, Cell.

[41]  A. Kurosky,et al.  Monoclonal Antibody against the Plasmodium falciparum Chitinase , PfCHT 1 , Recognizes a Malaria Transmission-Blocking Epitope in Plasmodium gallinaceum Ookinetes Unrelated to the Chitinase PgCHT 1 , 2002 .

[42]  I. Felger,et al.  Limited polymorphism in Plasmodium falciparum sexual-stage antigens. , 2001, The American journal of tropical medicine and hygiene.

[43]  K. Mendis,et al.  Malaria transmission-blocking vaccines—how can their development be supported? , 2000, Nature Medicine.

[44]  H. Sakaida,et al.  Targeted Disruption of the Plasmodium berghei Ctrp Gene Reveals Its Essential Role in Malaria Infection of the Vector Mosquito , 1999, The Journal of experimental medicine.

[45]  R. Sinden,et al.  CTRP is essential for mosquito infection by malaria ookinetes , 1999, The EMBO journal.

[46]  D. Kaslow,et al.  Identification of additional members define a Plasmodium falciparum gene superfamily which includes Pfs48/45 and Pfs230. , 1999, Molecular and biochemical parasitology.

[47]  J. Healer,et al.  Phagocytosis Does Not Play a Major Role in Naturally Acquired Transmission-Blocking Immunity to Plasmodium falciparum Malaria , 1999, Infection and Immunity.

[48]  D. Kaslow,et al.  Sequence Polymorphism in Two Novel Plasmodium vivax Ookinete Surface Proteins, Pvs25 and Pvs28, That Are Malaria Transmission-blocking Vaccine Candidates , 1998, Molecular medicine.

[49]  F. Ayala,et al.  Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. , 1998, Genetics.

[50]  D. Kaslow,et al.  Saccharomyces cerevisiae-Secreted Fusion Proteins Pfs25 and Pfs28 Elicit Potent Plasmodium falciparum Transmission-Blocking Antibodies in Mice , 1998, Infection and Immunity.

[51]  R. Carter,et al.  Complement-mediated lysis of Plasmodium falciparum gametes by malaria-immune human sera is associated with antibodies to the gamete surface antigen Pfs230 , 1997, Infection and immunity.

[52]  M. Santiago,et al.  Minimal variation in the Pfs28 ookinete antigen from Philippine field isolates of Plasmodium falciparum. , 1997, Molecular and biochemical parasitology.

[53]  D. Kaslow,et al.  A novel malaria protein, Pfs28, and Pfs25 are genetically linked and synergistic as falciparum malaria transmission-blocking vaccines , 1997, Infection and immunity.

[54]  R. Carter,et al.  Predicted disulfide-bonded structures for three uniquely related proteins of Plasmodium falciparum, Pfs230, Pfs48/45 and Pf12. , 1995, Molecular and biochemical parasitology.

[55]  R. Konings,et al.  Minimal variation in the transmission-blocking vaccine candidate Pfs48/45 of the human malaria parasite Plasmodium falciparum. , 1995, Molecular and biochemical parasitology.

[56]  R. Sinden,et al.  Characterization of the modes of action of anti-Pbs21 malaria transmission-blocking immunity: ookinete to oocyst differentiation in vivo , 1994, Parasitology.

[57]  K. Williamson,et al.  Strain polymorphism of Plasmodium falciparum transmission-blocking target antigen Pfs230. , 1993, Molecular and biochemical parasitology.

[58]  D. Kaslow,et al.  Pgs28 belongs to a family of epidermal growth factor-like antigens that are targets of malaria transmission-blocking antibodies , 1993, The Journal of experimental medicine.

[59]  A. Saul Minimal efficacy requirements for malarial vaccines to significantly lower transmission in epidemic or seasonal malaria. , 1993, Acta tropica.

[60]  D. Kaslow,et al.  The peritrophic membrane as a barrier: its penetration by Plasmodium gallinaceum and the effect of a monoclonal antibody to ookinetes. , 1991, Experimental parasitology.

[61]  R. Carter,et al.  Properties of epitopes of Pfs 48/45, a target of transmission blocking monoclonal antibodies, on gametes of different isolates of Plasmodium falciparum , 1990, Parasite immunology.

[62]  D. Kaslow,et al.  Minimal variation in a vaccine candidate from the sexual stage of Plasmodium falciparum. , 1989, Molecular and biochemical parasitology.

[63]  J. Coligan,et al.  A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains , 1988, Nature.

[64]  A. Saul Kinetic constraints on the development of a malaria vaccine , 1987, Parasite immunology.

[65]  R. Carter,et al.  Target antigens in malaria transmission blocking immunity. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[66]  R. Carter,et al.  A surface protein expressed during the transformation of zygotes of Plasmodium gallinaceum is a target of transmission-blocking antibodies , 1984, Infection and immunity.

[67]  T. Burkot,et al.  Target antigens of transmission-blocking immunity on gametes of plasmodium falciparum , 1983, The Journal of experimental medicine.

[68]  P. Graves Studies on the use of a membrane feeding technique for infecting Anopheles gambiae with Plasmodium falciparum. , 1980, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[69]  R. Gwadz Successful immunization against the sexual stages of Plasmodium gallinaceum. , 1976, Science.

[70]  R. Carter,et al.  Malaria transmission blocked by immunisation with gametes of the malaria parasite , 1976, Nature.