Bayesian parameter estimation by continuous homodyne detection

We simulate the process of continuous homodyne detection of the radiative emission from a quantum system, and we investigate how a Bayesian analysis can be employed to determine unknown parameters that govern the system evolution. Measurement backaction quenches the system dynamics at all times and we show that the ensuing transient evolution is more sensitive to system parameters than the steady state of the system. The parameter sensitivity can be quantified by the Fisher information, and we investigate numerically and analytically how the temporal noise correlations in the measurement signal contribute to the ultimate sensitivity limit of homodyne detection.

[1]  Animesh Datta,et al.  Precision metrology using weak measurements. , 2013, Physical review letters.

[2]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[3]  K. Mølmer,et al.  Bayesian parameter inference from continuously monitored quantum systems , 2012, 1212.5700.

[4]  Luis A. Correa,et al.  Achieving sub-shot-noise sensing at finite temperatures , 2016 .

[5]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[6]  Klaus Molmer,et al.  Estimation of atomic interaction parameters by photon counting , 2014, 1403.1192.

[7]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .

[8]  Kurt Jacobs,et al.  Stochastic Processes for Physicists: Stochastic Processes for Physicists , 2010 .

[9]  Klaus Mølmer,et al.  Fisher information and the quantum Cramér-Rao sensitivity limit of continuous measurements. , 2013, Physical review letters.

[10]  B. R. Mollow Power spectrum of light scattered by two-level systems , 1969 .

[11]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[12]  Klaus Mølmer,et al.  Hypothesis testing with open quantum systems. , 2014, Physical review letters.

[13]  Vittorio Giovannetti,et al.  Quantum estimation via sequential measurements , 2015, 1507.07634.

[14]  J. P. Garrahan,et al.  Dynamical phase transitions as a resource for quantum enhanced metrology , 2014, 1411.3914.

[15]  H. Primakoff,et al.  Field dependence of the intrinsic domain magnetization of a ferromagnet , 1940 .

[16]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[17]  Klaus Molmer,et al.  Parameter estimation by multichannel photon counting , 2014, 1411.3474.

[18]  F. Nori,et al.  Quantum information processing with superconducting qubits in a microwave field , 2003, cond-mat/0306207.