High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance

Cassava bacterial blight (CBB), incited by Xanthomonas axonopodis pv. manihotis (Xam), is the most important bacterial disease of cassava, a staple food source for millions of people in developing countries. Here we present a widely applicable strategy for elucidating the virulence components of a pathogen population. We report Illumina-based draft genomes for 65 Xam strains and deduce the phylogenetic relatedness of Xam across the areas where cassava is grown. Using an extensive database of effector proteins from animal and plant pathogens, we identify the effector repertoire for each sequenced strain and use a comparative sequence analysis to deduce the least polymorphic of the conserved effectors. These highly conserved effectors have been maintained over 11 countries, three continents, and 70 y of evolution and as such represent ideal targets for developing resistance strategies.

[1]  Julian Parkhill,et al.  Whole genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing , 2012, Nature Genetics.

[2]  Philip Bradley,et al.  The Crystal Structure of TAL Effector PthXo1 Bound to Its DNA Target , 2012, Science.

[3]  Nieng Yan,et al.  Structural Basis for Sequence-Specific Recognition of DNA by TAL Effectors , 2012, Science.

[4]  P. Ronald,et al.  Small Protein-Mediated Quorum Sensing in a Gram-Negative Bacterium , 2011, PloS one.

[5]  B. Staskawicz,et al.  Computational and Biochemical Analysis of the Xanthomonas Effector AvrBs2 and Its Role in the Modulation of Xanthomonas Type Three Effector Delivery , 2011, PLoS pathogens.

[6]  Joanna B. Goldberg,et al.  Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes , 2011, Nature Genetics.

[7]  P. Dean Functional domains and motifs of bacterial type III effector proteins and their roles in infection. , 2011, FEMS microbiology reviews.

[8]  J. Setubal,et al.  The Plant Pathogen Pseudomonas syringae pv. tomato Is Genetically Monomorphic and under Strong Selection to Evade Tomato Immunity , 2011, PLoS pathogens.

[9]  R. Visser,et al.  Functional stacking of three resistance genes against Phytophthora infestans in potato , 2011, Transgenic Research.

[10]  Ching-Hong Yang,et al.  Hpa2 Required by HrpF To Translocate Xanthomonas oryzae Transcriptional Activator-Like Effectors into Rice for Pathogenicity , 2011, Applied and Environmental Microbiology.

[11]  J. Setubal,et al.  Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper , 2011, BMC Genomics.

[12]  G. Martin,et al.  Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in Pseudomonas syringae , 2011, Proceedings of the National Academy of Sciences.

[13]  B. Thomma,et al.  Of PAMPs and Effectors: The Blurred PTI-ETI Dichotomy[OA] , 2011, Plant Cell.

[14]  F. White,et al.  Rice xa13 Recessive Resistance to Bacterial Blight Is Defeated by Induction of the Disease Susceptibility Gene Os-11N3[W][OA] , 2010, Plant Cell.

[15]  Jens Boch,et al.  Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. , 2010, The New phytologist.

[16]  P. Ronald,et al.  Rice Snl6, a Cinnamoyl-CoA Reductase-Like Gene Family Member, Is Required for NH1-Mediated Immunity to Xanthomonas oryzae pv. oryzae , 2010, PLoS genetics.

[17]  A. Bogdanove,et al.  TAL effectors: finding plant genes for disease and defense. , 2010, Current opinion in plant biology.

[18]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[19]  G. Coaker,et al.  Molecular and evolutionary analyses of Pseudomonas syringae pv. tomato race 1. , 2010, Molecular plant-microbe interactions : MPMI.

[20]  W. Gruissem,et al.  Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava , 2009, Nature Protocols.

[21]  P. Ronald,et al.  A Type I–Secreted, Sulfated Peptide Triggers XA21-Mediated Innate Immunity , 2009, Science.

[22]  Frank F White,et al.  The type III effectors of Xanthomonas. , 2009, Molecular plant pathology.

[23]  Ji-Liang Tang,et al.  Identification of six type III effector genes with the PIP box in Xanthomonas campestris pv. campestris and five of them contribute individually to full pathogenicity. , 2009, Molecular plant-microbe interactions : MPMI.

[24]  G. Martin,et al.  Xanthomonas T3S Effector XopN Suppresses PAMP-Triggered Immunity and Interacts with a Tomato Atypical Receptor-Like Kinase and TFT1[W] , 2009, The Plant Cell Online.

[25]  J. Dubcovsky,et al.  A Kinase-START Gene Confers Temperature-Dependent Resistance to Wheat Stripe Rust , 2009, Science.

[26]  Claire Cowie,et al.  Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. , 2009, International journal of systematic and evolutionary microbiology.

[27]  U. Bonas,et al.  How Xanthomonas type III effectors manipulate the host plant. , 2009, Current opinion in microbiology.

[28]  J. M. Dow,et al.  Acquisition and Evolution of Plant Pathogenesis–Associated Gene Clusters and Candidate Determinants of Tissue-Specificity in Xanthomonas , 2008, PloS one.

[29]  U. Bonas,et al.  HpaA from Xanthomonas is a regulator of type III secretion , 2008, Molecular microbiology.

[30]  Craig S. Tucker,et al.  Appendix 2: Selected Excerpts from the Food and Agriculture Organization (FAO) of the United Nations Code of Conduct for Responsible Fisheries , 2008 .

[31]  S. He,et al.  The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana. , 2007, The Plant journal : for cell and molecular biology.

[32]  D. Gabriel,et al.  All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation. , 2007, Molecular plant-microbe interactions : MPMI.

[33]  H. Ishihara,et al.  A pthA Homolog from Xanthomonas axonopodis pv. citri Responsible for Host-Specific Suppression of Virulence , 2007, Journal of bacteriology.

[34]  Jonathan D. G. Jones,et al.  The plant immune system , 2006, Nature.

[35]  G. Martin,et al.  Bacterial elicitation and evasion of plant innate immunity , 2006, Nature Reviews Molecular Cell Biology.

[36]  S. Chisholm,et al.  Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response , 2006, Cell.

[37]  B. Staskawicz,et al.  The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana. , 2005, The Plant journal : for cell and molecular biology.

[38]  F. White,et al.  Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. , 2004, Molecular plant-microbe interactions : MPMI.

[39]  Hernán Ceballos,et al.  Cassava breeding: opportunities and challenges , 2004, Plant Molecular Biology.

[40]  J. Leach,et al.  The avrRxo1 gene from the rice pathogen Xanthomonas oryzae pv. oryzicola confers a nonhost defense reaction on maize with resistance gene Rxo1. , 2004, Molecular plant-microbe interactions : MPMI.

[41]  Jung-Gun Kim,et al.  Characterization of the Xanthomonas axonopodis pv. glycines Hrp Pathogenicity Island , 2003, Journal of bacteriology.

[42]  G. Van den Ackerveken,et al.  The xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. , 2002, Molecular plant-microbe interactions : MPMI.

[43]  U. Bonas,et al.  Functional Analysis of HrpF, a Putative Type III Translocon Protein from Xanthomonas campestris pv. vesicatoria , 2002, Journal of bacteriology.

[44]  David Mackey,et al.  RIN4 Interacts with Pseudomonas syringae Type III Effector Molecules and Is Required for RPM1-Mediated Resistance in Arabidopsis , 2002, Cell.

[45]  S. Restrepo,et al.  Characterization of pathotypes among isolates of Xanthomonas axonopodis pv. manihotis in Colombia , 2000 .

[46]  Duque,et al.  Genetic and pathogenic variation of Xanthomonas axonopodis pv. manihotis in Venezuela. , 1998 .

[47]  S. Restrepo,et al.  Geographical Differentiation of the Population of Xanthomonas axonopodis pv. manihotis in Colombia , 1997, Applied and environmental microbiology.

[48]  G. Martin,et al.  Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase , 1996, Science.

[49]  C. Tabin,et al.  A molecular pathway determining left-right asymmetry in chick embryogenesis , 1995, Cell.

[50]  G. Sundin,et al.  Genetic and plasmid diversity within natural populations of Pseudomonas syringae with various exposures to copper and streptomycin bactericides , 1994, Applied and environmental microbiology.

[51]  V. Verdier,et al.  Assessment of genetic diversity among strains of Xanthomonas campestris pv. manihotis , 1993 .

[52]  S. Goodison,et al.  16S ribosomal DNA amplification for phylogenetic study , 1991, Journal of bacteriology.

[53]  U. Bonas,et al.  Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria , 1989, Molecular and General Genetics MGG.

[54]  L. Jin,et al.  Variances of the average numbers of nucleotide substitutions within and between populations. , 1989, Molecular biology and evolution.

[55]  H H Flor,et al.  Current Status of the Gene-For-Gene Concept , 1971 .

[56]  R. H. Biffen Mendel's Laws of Inheritance and Wheat Breeding , 1905, The Journal of Agricultural Science.

[57]  G. Martin,et al.  Xanthomonas T 3 S Effector XopN Suppresses PAMP-Triggered Immunity and Interacts with a Tomato Atypical Receptor-Like Kinase and TFT 1 , 2009 .

[58]  A. Furutani,et al.  Identification of novel type III secretion effectors in Xanthomonas oryzae pv. oryzae. , 2009, Molecular plant-microbe interactions : MPMI.

[59]  Food Security Agriculture Organization of the United Nations (FAO) , 2004 .

[60]  V. Verdier,et al.  Detection of the Cassava Bacterial Blight Pathogen, Xanthomonas axonopodis pv. manihotis, by Polymerase Chain Reaction. , 1998, Plant disease.

[61]  J. Lozano Bacterial Blight of Cassava in Colombia: Epidemiology and Control , 1974 .

[62]  Hh Flor,et al.  Host-parasite interaction in flax rust–its genetics and other implications , 1955 .