Utility Representation of an Incomplete Preference Relation

Abstract We consider the problem of representing a (possibly) incomplete preference relation by means of a vector-valued utility function. Continuous and semicontinuous representation results are reported in the case of preference relations that are, in a sense, not “too incomplete.” These results generalize some of the classical utility representation theorems of the theory of individual choice and paves the way towards developing a consumer theory that realistically allows individuals to exhibit some “indecisiveness” on occasion. Journal of Economic Literature Classification Number: D11.

[1]  Micha A. Peles On dilworth’s theorem in the in finite case , 1963 .

[2]  E. Szpilrajn Sur l'extension de l'ordre partiel , 1930 .

[3]  John Duggan,et al.  A General Extension Theorem for Binary Relations , 1999 .

[4]  R. Aumann UTILITY THEORY WITHOUT THE COMPLETENESS AXIOM , 1962 .

[5]  Wojciech A. Trybulec Partially Ordered Sets , 1990 .

[6]  B. Schröder The Dimension of Ordered Sets , 2003 .

[7]  D. Sondermann Utility representations for partial orders , 1980 .

[8]  Amartya Sen,et al.  A Note on Representing Partial Orderings , 1976 .

[9]  Micha A. Perles A proof of dilworth’s decomposition theorem for partially ordered sets , 1963 .

[10]  William T. Trotter,et al.  Dimension Theory for Ordered Sets , 1982 .

[11]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[12]  OK EFEA. A MODEL OF PROCEDURAL DECISION MAKING IN THE PRESENCE OF RISK ∗ , 2002 .

[13]  G. Cantor Beiträge zur Begründung der transfiniten Mengenlehre , 1897 .

[14]  Hazel Perfect,et al.  Systems of representatives , 1966 .

[15]  E. C. Milner Dilworth's Decomposition Theorem in the Infinite Case , 1990 .

[16]  T. Rader,et al.  The Existence of a Utility Function to Represent Preferences , 1963 .

[17]  G. Debreu Mathematical Economics: Continuity properties of Paretian utility , 1964 .

[18]  J. Weymark,et al.  A Quasiordering Is the Intersection of Orderings , 1998 .

[19]  L. Shapley,et al.  Equilibrium points in games with vector payoffs , 1959 .

[20]  박상용 [경제학] 현시선호이론(Revealed Preference Theory) , 1980 .

[21]  B. Peleg UTILITY FUNCTIONS FOR PARTIALLY ORDERED TOPOLOGICAL SPACES. , 1970 .

[22]  Peter C. Fishburn,et al.  Impossibility Theorems without the Social Completeness Axiom , 1974 .

[23]  John S. Chipman,et al.  Preferences, Utility, and Demand. , 1972 .

[24]  R. P. Dilworth,et al.  A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS , 1950 .

[25]  Debraj Ray,et al.  Equilibrium Binding Agreements , 1997 .

[26]  W. Trotter,et al.  Inequalities in dimension theory for posets , 1975 .

[27]  Joseph P. S. Kung,et al.  The Dilworth Theorems , 1990 .

[28]  M. Rabin Psychology and Economics , 1997 .

[29]  E. Michael Topologies on spaces of subsets , 1951 .

[30]  Oliver Pretzel,et al.  On the Dimension of Partially Ordered Sets , 1977, J. Comb. Theory, Ser. A.

[31]  G. Debreu ON THE CONTINUITY PROPERTIES OF PARETIAN UTILITY , 1963 .

[32]  J. Jaffray Semicontinuous extension of a partial order , 1975 .

[33]  G. Debreu Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .