Protonation of a Spherical Macrotricyclic Tetramine: Water Inclusion, Allosteric Effect, and Cooperativity.

The spherical macrotricyclic cryptand tetramine "C24" (1) displays remarkable protonation behaviour. It undergoes protonation in four successive steps for which pKa values of 11.17±0.05, 10.28±0.04, 6.00±0.06 and 3.08±0.08 have been determined at 298 K. The unusually close values for the first two protonations provide evidence for the encapsulation of a water molecule serving as effector for the second protonation, which is consistent with earlier observations that the exchange of protons bound in the diprotonated species with solvent protons is unusually slow and that 17 O NMR spectra show the presence of an oxygen centre in the same species quite distinct from that of solvent water. Encapsulation of water is also observed in the solid state in the picrate salt of the triprotonated form of 1 and has been characterised by means of X-ray structural determination.

[1]  Pall Thordarson,et al.  The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis. , 2016, Chemical communications.

[2]  G. Sheldrick SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.

[3]  Simon Grabowsky,et al.  Hirshfeld surface analysis of crystal packing in aza-aromatic picrate salts , 2014 .

[4]  S. Zakharov Ortho/para spin-isomers of H2O molecules as a factor responsible for formation of two structural motifs in water , 2013, Biofizika.

[5]  H. L. Anderson,et al.  Was ist Kooperativität , 2009 .

[6]  Harry L Anderson,et al.  What is cooperativity? , 2009, Angewandte Chemie.

[7]  J. Chambron,et al.  The ins and outs of proton complexation. , 2009, Chemical Society reviews.

[8]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[9]  A. N. Chekhlov Synthesis and crystal structure of 4,7,13,16,21,24-hexaoxa-1,10-diazoniabicyclo[8.8.8]hexacosane Bis(citrate) hydrate , 2008 .

[10]  D. Michel Cooperative equilibrium curves generated by ordered ligand binding to multi-site molecules. , 2007, Biophysical chemistry.

[11]  M. S. Baymak,et al.  Equilibria of formation and dehydration of the carbinolamine intermediate in the reaction of benzaldehyde with hydrazine , 2007 .

[12]  C. Piguet,et al.  The origin of the surprising stabilities of highly charged self-assembled polymetallic complexes in solution. , 2007, Inorganic chemistry.

[13]  M. Borkovec,et al.  Simple thermodynamics for unravelling sophisticated self-assembly processes. , 2006, Dalton transactions.

[14]  F. Matsushima,et al.  Separation and Conversion Dynamics of Four Nuclear Spin Isomers of Ethylene , 2005, Science.

[15]  M. Borkovec,et al.  A simple thermodynamic model for quantitatively addressing cooperativity in multicomponent self-assembly processes--part 1: Theoretical concepts and application to monometallic coordination complexes and bimetallic helicates possessing identical binding sites. , 2005, Chemistry.

[16]  M. Borkovec,et al.  A simple thermodynamic model for quantitatively addressing cooperativity in multicomponent self-assembly processes--Part 2: Extension to multimetallic helicates possessing different binding sites. , 2005, Chemistry.

[17]  J. F. Stoddart,et al.  Multivalency and cooperativity in supramolecular chemistry. , 2005, Accounts of chemical research.

[18]  M. Borkovec,et al.  Strict self-assembly of polymetallic helicates: the concepts behind the semantics , 2005 .

[19]  M. Borkovec,et al.  A simple thermodynamic model for rationalizing the formation of self-assembled multimetallic edifices: application to triple-stranded helicates. , 2004, Journal of the American Chemical Society.

[20]  J. Lukin,et al.  The structure--function relationship of hemoglobin in solution at atomic resolution. , 2004, Chemical reviews.

[21]  G. Ercolani Assessment of cooperativity in self-assembly. , 2003, Journal of the American Chemical Society.

[22]  G. Ercolani A Model for Self-Assembly in Solution1 , 2003 .

[23]  J. Springborg Adamanzanes-bi- and tricyclic tetraamines and their coordination compounds , 2003 .

[24]  A. Braibanti,et al.  Cooperativity effects in the protonation of aliphatic polyamines , 2002 .

[25]  A. Albrecht-Gary,et al.  Self-Assembly of Tricuprous Double Helicates: Thermodynamics, Kinetics, and Mechanism , 2001 .

[26]  A. Bianchi,et al.  Proton Coordination by Polyamine Compounds in Aqueous Solution , 1999 .

[27]  M. Hanfland,et al.  Modulated phases and proton centring in ice observed by X-ray diffraction up to 170 GPa , 1999, Nature.

[28]  J. Atwood,et al.  PROTON-INDUCED CHIRALITY : PROTON COMPLEXATION IN THE CHIRAL CRYPTAND 222-2H+ DICATION ISOLATED FROM A LIQUID CLATHRATE MEDIUM , 1995 .

[29]  Thomas M. Garrett,et al.  Binding cooperativity in the self-assembly of double stranded silver(I) trihelicates , 1992 .

[30]  J. Lehn,et al.  Anion-receptor molecules: macrocyclic and macrobicyclic effects on anion binding by polyammonium receptor molecules , 1988 .

[31]  S. Scheiner Theoretical studies of proton transfers , 1985 .

[32]  R. Sessions,et al.  Synthesis and Protonation Features of 24‐, 27‐ and 32‐membered Macrocyclic Polyamines , 1983 .

[33]  J. Lehn,et al.  Anion receptor molecules. Chain length dependent selective binding of organic and biological dicarboxylate anions by ditopic polyammonium macrocycles , 1982 .

[34]  J. Lehn,et al.  Molecular recognition. Selective ammonium cryptates of synthetic receptor molecules possessing a tetrahedral recognition site , 1982 .

[35]  S. Hünig,et al.  Zweiprotische Säuren mit inverser pK-Folge, I. Homophenolphthalein , 1979 .

[36]  Jean-Marie Lehn,et al.  Cryptates: the chemistry of macropolycyclic inclusion complexes , 1978 .

[37]  Jean-Marie Lehn,et al.  Cryptates: inclusion complexes of macropolycyclic receptor molecules , 1978 .

[38]  J. Lehn Cryptates: macropolycyclic inclusion complexes , 1977 .

[39]  J. Lehn,et al.  Anion cryptates: highly stable and selective macrotricyclic anion inclusion complexes , 1976 .

[40]  J. Lehn,et al.  Cryptates. XVII. Synthesis and cryptate complexes of a spheroidal macrotricyclic ligand with octahedrotetrahedral coordination , 1975 .

[41]  G. Scatchard,et al.  THE ATTRACTIONS OF PROTEINS FOR SMALL MOLECULES AND IONS , 1949 .

[42]  G. Schwarzenbach,et al.  Zwei Protonen in einem Schritt , 1943 .

[43]  G. Schwarzenbach Ein Indikator mit bemerkenswerten Eigenschaften , 1943 .

[44]  J. Kirkwood,et al.  The Electrostatic Influence of Substituents on the Dissociation Constants of Organic Acids. II , 1938 .

[45]  G. Adair THE HEMOGLOBIN SYSTEM VI. THE OXYGEN DISSOCIATION CURVE OF HEMOGLOBIN , 1925 .

[46]  E. Garcı́a-España,et al.  CO2 Fixation and Activation by CuII Complexes of 5,5 -Terpyridinophane Macrocycles , 2008 .

[47]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[48]  J. Harrowfield π Stacking and the co-ordinate bond: sometimes conflicting factors in molecular recognition, as revealed in the structures of metal picrates , 1996 .

[49]  R. Hancock,et al.  The unusual protonation constants of cyclam. A potentiometric, crystallographic and molecular mechanics study , 1996 .

[50]  P. A. Lay,et al.  The Synthesis and Structure of Encapsulating Ligands: Properties of Bicyclic Hexamines , 1994 .

[51]  J. Lehn,et al.  Helicate self-organisation: positive cooperativity in the self-assembly of double-helical metal complexes , 1992 .

[52]  R. Weiss,et al.  [3] Cryptates: X-ray crystal structures of the chloride and ammonium ion complexes of a spheroidal macrotricyclic ligand , 1976 .