Effect of hydrocarbons and other parameters on hydrocarbon-utilizing Pichia angusta MTCC-225

Pichia angusta MTCC-225, a catalase-positive yeast that utilizes methanol and lighter hydrocarbons, is the subject of this investigation. An orthogonal experimental design L16 was used to investigate the effects of methanol, a gas mixture, zero air, temperature, agitation, and salts solution on hydrocarbon utilizing P. angusta. QUALITEK-4 Software was used for automatic design and analysis of the experimental results. Among the various parameters tested, agitation contributed the highest influence (56.5%). Zero air, methanol concentration, and gas mixture showed a moderate influence on the growth of P. angusta. Methanol concentration and gas mixture showed a 10.91 and 10.12% influence, respectively, on yeast growth. Zero air played an important role, with a 15.19% influence on the utilization of hydrocarbon.

[1]  B. Schink,et al.  Preferential cultivation of type II methanotrophic bacteria from littoral sediments (Lake Constance). , 2004, FEMS microbiology ecology.

[2]  Y. Tani,et al.  Xylitol production by a methanol yeast, Candida boidinii (Kloeckera sp.) No. 2201 , 1989 .

[3]  S. Radwan,et al.  Lipids of n-Alkane-Utilizing Microorganisms and Their Application Potential , 1993 .

[4]  G. King,et al.  Methanol Promotes Atmospheric Methane Oxidation by Methanotrophic Cultures and Soils , 1998, Applied and Environmental Microbiology.

[5]  T. Katsuragi,et al.  Polyol production by culture of methanol-utilizing yeast. , 2000, Journal of bioscience and bioengineering.

[6]  L. Bakken,et al.  Methanol Improves Methane Uptake in Starved Methanotrophic Microorganisms , 1998, Applied and Environmental Microbiology.

[7]  C. Kurtzman,et al.  Relation between phylogeny and physiology in some ascomycetous yeasts , 2004, Antonie van Leeuwenhoek.

[8]  R. Klusman,et al.  Soil gas and related methods for natural resource exploration , 1993 .

[9]  M. Osumi,et al.  Ultrastructure of methanol-utilizing yeast cells: appearance of microbodies in relation to high catalase activity , 1975, Journal of bacteriology.

[10]  A. Crolla,et al.  Optimization of citric acid production from Candida lipolytica Y-1095 using n-paraffin. , 2001, Journal of biotechnology.

[11]  P. Grimont,et al.  Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. , 2004, Research in microbiology.

[12]  K. Komagata,et al.  ASSIMILATION OF HYDROCARBONS BY YEASTS , 1964 .

[13]  O. Käppeli,et al.  Chemical and structural alterations at the cell surface of Candida tropicalis, induced by hydrocarbon substrate , 1978, Journal of bacteriology.

[14]  H. Oh,et al.  Surface and physico-chemical properties of a glycolipid biosurfactant, mannosylerythritol lipid, from Candidaantarctica , 2002, Biotechnology Letters.

[15]  Steven A. Tedesco,et al.  Surface geochemistry in petroleum exploration , 1994 .

[16]  C. Anthony,et al.  The Biochemistry of Methylotrophs , 1982 .

[17]  Y. Oh,et al.  Use of microorganism-immobilized polyurethane foams to absorb and degrade oil on water surface , 2000, Applied Microbiology and Biotechnology.

[18]  Ronald M. Atlas,et al.  Handbook of microbiological media , 1993 .

[19]  O. Käppeli,et al.  Component from the cell surface of the hydrocarbon-utilizing yeast Candida tropicalis with possible relation to hydrocarbon transport , 1977, Journal of bacteriology.

[20]  Graeme M. Walker,et al.  Yeast Physiology and Biotechnology , 1998 .

[21]  G. Péter,et al.  Six new methanol assimilating yeast species from wood material , 2004, Antonie van Leeuwenhoek.