Metamorphism, Melting, and Extension: Age Constraints from the High Himalayan Slab of Southeast Zanskar and Northwest Lahaul

We present evidence for two distinct stages of Tertiary metamorphism (M1 and M2) in the High Himalayan Slab of southeast Zanskar and northwest Lahaul, as well as evidence for an older, pre‐Himalayan metamorphism (pre‐M1). The M1 was a regional Barrovian‐type event related to crustal shortening and thickening of the Indian plate margin, while M2 was associated with crustal melting and the emplacement of the Gumburanjon leucogranite into the Zanskar Shear Zone at the top of the slab. U‐Pb dating of metamorphic and magmatic accessory phases constrains the timing of M1 between 30 and 37 Ma and the crystallization and emplacement age of the Gumburanjon leucogranite at 21–22 Ma. Inherited accessory phases in metamorphic and magmatic samples suggest that the protoliths of the slab are at least Lower Paleozoic in age and that they experienced a major pre‐M1 thermal perturbation at ca. 450–500 Ma. Whether this was associated with a regional Barrovian‐type metamorphism or whether it was a thermal event related to the intrusion of large Cambro‐Ordovician granites remains uncertain. The 40Ar/39Ar cooling ages of muscovites from metamorphic schists range from \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$22.0\pm 0.6$$ \end{document} to \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$20.4\pm 0.6$$ \end{document} Ma, suggesting that cooling of the High Himalayan Slab below the nominal closure temperature for Ar loss in muscovite (∼400°–350°C) occurred during the Early Miocene. Muscovite and biotite 40Ar/39Ar cooling ages from the Gumburanjon leucogranite are virtually identical at ca. 20–21 Ma and are only slightly younger than the U‐Pb crystallization ages, suggesting rapid, postemplacement cooling at the top of the slab. Rapid cooling, together with the emplacement of the Gumburanjon leucogranite into the immediate footwall of the Zanskar Shear Zone, suggests a direct link between normal faulting and crustal anatexis.

[1]  Ian McDougall,et al.  Geochronology and thermochronology by the [40]Ar/[39]Ar method , 1999 .

[2]  T. Harrison,et al.  New insights into the origin of two contrasting Himalayan granite belts , 1997 .

[3]  S. Bowring,et al.  U-Pb systematics of monazite and xenotime: case studies from the Paleoproterozoic of the Grand Canyon, Arizona , 1997 .

[4]  D. Vance,et al.  Possible constraints on anatectic melt residence times from accessory mineral dissolution rates: an example from Himalayan leucogranites , 1997, Mineralogical Magazine.

[5]  T. Harrison,et al.  Express Letter A Late Miocene-Pliocene origin for the Central Himalayan inverted metamorphism , 1997 .

[6]  K. Hodges,et al.  Tectonic evolution of the central Annapurna Range, Nepalese Himalayas , 1996 .

[7]  C. Davidson,et al.  Ductile extrusion of the Higher Himalayan Crystalline in Bhutan: evidence from quartz microfabrics , 1996 .

[8]  M. Searle,et al.  Age of crustal melting and leucogranite formation from U-Pb zircon and monazite dating in the western Himalaya, Zanskar, India , 1995 .

[9]  N. Harris,et al.  Decompression and anatexis of Himalayan metapelites , 1994 .

[10]  R. Walter,et al.  Intercalibration of astronomical and radioisotopic time , 1994 .

[11]  B. Burchfiel,et al.  Thermobarometric and40Ar/39Ar geochronologic constraints on Eohimalayan metamorphism in the Dinggyê area, southern Tibet , 1994 .

[12]  N. Harris,et al.  Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya , 1993 .

[13]  L. Spring,et al.  Geological transect across the Northwestern Himalaya in eastern Ladakh and Lahul (a model for the continental collision of India and Asia) , 1993 .

[14]  F. Spear Metamorphic phase equilibria and pressure-temperature-time paths , 1993 .

[15]  B. Burchfiel,et al.  Simultaneous Miocene Extension and Shortening in the Himalayan Orogen , 1992, Science.

[16]  L. Spring,et al.  Nappe tectonics, extension, and metamorphic evolution in the Indian Tethys Himalaya (Higher HImalaya , 1992 .

[17]  M. Searle,et al.  Pressure, temperature and time constraints on Himalayan metamorphism from eastern Kashmir and western Zanskar , 1992, Journal of the Geological Society.

[18]  I. Wendt,et al.  The statistical distribution of the mean squared weighted deviation , 1992 .

[19]  B. Burchfiel,et al.  The South Tibetan Detachment System, Himalayan Orogen: Extension Contemporaneous With and Parallel to Shortening in a Collisional Mountain Belt , 1992 .

[20]  T. Harrison,et al.  A Late Miocene-Pliocene origin for the Central Himalayan inverted metamorphism: Earth and Planetary , 1992 .

[21]  S. Swapp,et al.  Inverted metamorphism within the Tibetan slab of Bhutan; evidence for a tectonically transported heat-source , 1991 .

[22]  R. Parrish U–Pb dating of monazite and its application to geological problems , 1990 .

[23]  B. Barreiro,et al.  Monazite U-Pb dating of staurolite grade metamorphism in pelitic schists , 1990 .

[24]  D. Castelli,et al.  The crystalline units of the High Himalayas in the Lahul–Zanskar region (northwest India): metamorphic–tectonic history and geochronology of the collided and imbricated Indian plate , 1990, Geological Magazine.

[25]  Roger Powell,et al.  An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2 , 1990 .

[26]  T. Harrison,et al.  40Ar/39Ar age constraints on deformation and metamorphism in the main central thrust zone and Tibetan slab, eastern Nepal Himalaya , 1989 .

[27]  A. Stäubli Polyphase metamorphism and the development of the Main Central Thrust , 1989 .

[28]  R. Kundig Domal structures and high‐grade metamorphism in the Higher Himalayan Crystalline, Zanskar Region, north‐west Himalaya, India , 1989 .

[29]  M. Searle,et al.  Thermal model for the Zanskar Himalaya , 1989 .

[30]  K. Hodges,et al.  Thermal evolution of the Greater Himalaya, Garhwal, India , 1988 .

[31]  A. Thompson,et al.  Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis , 1988 .

[32]  J. Sutter,et al.  Thermochronology of economic mineral deposits; dating the stages of mineralization at Panasqueira, Portugal, by high-precision 40 / 39 Ar age spectrum techniques on muscovite , 1988 .

[33]  R. Powell,et al.  An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program , 1988 .

[34]  M. Searle Structural evolution and sequence of thrusting in the High Himalayan, Tibetan-Tethys and Indus Suture zones of Zanskar and Ladakh, Western Himalaya: Reply , 1988 .

[35]  D. Cooper,et al.  The closing of Tethys and the tectonics of the Himalaya , 1987 .

[36]  B. N. Upreti,et al.  Crustal generation of the Himalayan leucogranites , 1987 .

[37]  A. Baud,et al.  Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India) , 1987 .

[38]  U. Pognante,et al.  Preliminary data on the High Himalayan Crystallines along the Padum-Darcha Traverse (South-Eastern Zanskar, India) , 1987 .

[39]  B. Fryer,et al.  Garnet, tourmaline and muscovite-bearing leucogranites, gneisses and migmatites of the Higher Himalayas from Zanskar, Kulu, Lahoul and Kashmir , 1986, Geological Society, London, Special Publications.

[40]  U. Schärer The effect of initial230Th disequilibrium on young UPb ages: the Makalu case, Himalaya , 1984 .

[41]  J. Burg,et al.  Deformation of leucogranites of the crystalline Main Central Sheet in southern Tibet (China) , 1984 .

[42]  A. Thompson Dehydration melting of pelitic rocks and the generation of H 2 O-undersaturated granitic liquids , 1982 .

[43]  P. Fort Manaslu leucogranite: A collision signature of the Himalaya: A model for its genesis and emplacement , 1981 .

[44]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[45]  M. Thoni,et al.  GEOLOGY AND PETROGRAPHY OF KULU-SOUTH LAHULAREA. , 1977 .

[46]  P. K. Mehta Rb-Sr geochronology of the Kulu-Mandi Belt: Its implications for the Himalayan Tectogenesis , 1977 .

[47]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .

[48]  Derek York,et al.  Least squares fitting of a straight line with correlated errors , 1968 .

[49]  A. Gansser Geology of the Himalayas , 1964 .