Model validation for dynamically uncertain systems

Robust control models describe system uncertainty with both unknown additive signals and unknown dynamic perturbations. These unknown but bounded components lead to a model set description. Model validation is the experimental assessment of the ability of this model set to describe the observed system behaviors. In this paper we consider model validation for H∞ compatible models. This paper provides a detailed presentation of the H∞ model validation problem in the discrete frequency, discrete-time, and sampled-data frameworks. In each case the underlying results and the computational algorithms are discussed. The experimental applicability and the computational consequences are discussed in sufficient detail to give the reader an appreciation of the issues surrounding each model/experiment framework.

[1]  P. Khargonekar,et al.  Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .

[2]  K. Poolla,et al.  A time-domain approach to model validation , 1994, IEEE Trans. Autom. Control..

[3]  Ruud J. P. Schrama Accurate identification for control: the necessity of an iterative scheme , 1992 .

[4]  Roy S. Smith Model validation and parameter identification for systems in H∞ and l1 , 1992, 1992 American Control Conference.

[5]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[6]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[7]  M. Dahleh,et al.  Control of Uncertain Systems: A Linear Programming Approach , 1995 .

[8]  Robert Bitmead,et al.  Adaptive frequency response identification , 1987, 26th IEEE Conference on Decision and Control.

[9]  Diederich Hinrichsen,et al.  Control of Uncertain Systems , 1990 .

[10]  Roy S. Smith Model validation for robust control: an experimental process control application , 1995, Autom..

[11]  R. Younce,et al.  Identification with non-parametric uncertainty , 1990, IEEE International Symposium on Circuits and Systems.

[12]  Robert R. Bitmead,et al.  H/sub 2/ iterative model refinement and control robustness enhancement , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[13]  J. Partington,et al.  Robust approximation and identification in H∞ , 1991, 1991 American Control Conference.

[14]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[15]  B. Francis,et al.  A lifting technique for linear periodic systems with applications to sampled-data control , 1991 .

[16]  Roy S. Smith,et al.  Model Invalidation: A Connection between Robust Control and Identification , 1989 .

[17]  Jozsef Bokor,et al.  System identification with generalized orthonormal basis functions , 1995, Autom..

[18]  Hidenori Kimura,et al.  Time domain identification for robust control , 1993 .

[19]  C. Scherer Multiobjective H/sub 2//H/sub /spl infin// control , 1995 .

[20]  Pramod P. Khargonekar,et al.  Parameter identification in the presence of non-parametric dynamic uncertainty , 1990, Autom..

[21]  John Doyle,et al.  Structured uncertainty in control system design , 1985, 1985 24th IEEE Conference on Decision and Control.

[22]  John Doyle,et al.  Model validation: a connection between robust control and identification , 1992 .

[23]  Jeffrey C. Kantor,et al.  A model validation approach to fault detection , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[24]  D. Bayard,et al.  A Linear Programming Approach to Characterizing Norm Bounded Uncertainty from Experimental Data , 1991, 1991 American Control Conference.

[25]  Roy S. Smith,et al.  A generalization of the structured singular value and its application to model validation , 1998, IEEE Trans. Autom. Control..

[26]  Geir E. Dullerud,et al.  Validation of continuous-time control models by finite experimental data , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[27]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[28]  P. Khargonekar,et al.  Linear and nonlinear algorithms for identification in H/sub infinity / with error bounds , 1992 .

[29]  Paul M. J. Van den Hof,et al.  Approximate identification with closed-loop performance criterion and application to LQG feedback design , 1994, Autom..

[30]  P. Khargonekar,et al.  Linear and nonlinear algorithms for identification in H∞ with error bounds , 1991, 1991 American Control Conference.

[31]  G. Goodwin,et al.  Quantification of Uncertainty in Estimation , 1990 .

[32]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[33]  Geir E. Dullerud,et al.  A continuous-time extension condition , 1996, IEEE Trans. Autom. Control..

[34]  Carl N. Nett,et al.  Control oriented system identification: a worst-case/deterministic approach in H/sub infinity / , 1991 .

[35]  Stephen P. Boyd,et al.  Parameter set estimation of systems with uncertain nonparametric dynamics and disturbances , 1990, 29th IEEE Conference on Decision and Control.

[36]  Kameshwar Poolla,et al.  Time-domaim validation for sample-data uncertainty model , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[37]  Brian D. O. Anderson,et al.  A new approach to adaptive robust control , 1993 .

[38]  C. E. Rohrs,et al.  Identification with nonparametric uncertainty , 1990, 29th IEEE Conference on Decision and Control.