A finite volume scheme for boundary-driven convection–diffusion equations with relative entropy structure
暂无分享,去创建一个
[1] R. Eymard,et al. Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.
[2] A. Arnold,et al. On generalized Csiszár-Kullback inequalities , 2000 .
[3] Qiangchang Ju,et al. Large-time behavior of non-symmetric Fokker-Planck type equations , 2008 .
[4] Mark A. Peletier,et al. Variational modelling : energies, gradient flows, and large deviations , 2014, 1402.1990.
[5] Marianne Bessemoulin-Chatard,et al. A finite volume scheme for convection–diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme , 2010, Numerische Mathematik.
[6] Thierry Gallouët,et al. A finite volume scheme for anisotropic diffusion problems , 2004 .
[7] Anton Arnold,et al. Large-time behavior in non-symmetric Fokker-Planck equations , 2015, 1506.02470.
[8] Claire Chainais-Hillairet,et al. FINITE VOLUME APPROXIMATION FOR DEGENERATE DRIFT-DIFFUSION SYSTEM IN SEVERAL SPACE DIMENSIONS , 2004 .
[9] M. Burger,et al. A mixed finite element method for nonlinear diffusion equations , 2010 .
[10] Francis Filbet,et al. Asymptotic behaviour of a finite-volume scheme for the transient drift-diffusion model , 2007 .
[11] Francis Filbet,et al. Approximation of Hyperbolic Models for Chemosensitive Movement , 2005, SIAM J. Sci. Comput..
[12] Claire Chainais-Hillairet,et al. Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis , 2003 .
[13] F. Filbet,et al. On discrete functional inequalities for some finite volume schemes , 2012, 1202.4860.
[14] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[15] Xiaoye S. Li,et al. An overview of SuperLU: Algorithms, implementation, and user interface , 2003, TOMS.
[16] Clément Cancès,et al. Convergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations , 2015, Math. Comput..
[17] Clément Cancès,et al. Numerical Analysis of a Robust Free Energy Diminishing Finite Volume Scheme for Parabolic Equations with Gradient Structure , 2015, Found. Comput. Math..
[18] C. Villani,et al. Lyapunov functionals for boundary-driven nonlinear drift–diffusion equations , 2013, 1305.7405.
[19] Evgueni A. Haroutunian,et al. Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.
[20] Benjamin Jourdain,et al. Long-Time Asymptotics of a Multiscale Model for Polymeric Fluid Flows , 2006 .
[21] François Bouchut,et al. On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials , 1995, Differential and Integral Equations.
[22] Giuseppe Toscani,et al. ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .
[23] Nader Masmoudi,et al. Well‐posedness for the FENE dumbbell model of polymeric flows , 2008 .
[24] Thierry Gallouët,et al. A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension , 2006 .
[25] Raphaèle Herbin,et al. Small-stencil 3D schemes for diffusive flows in porous media , 2012 .
[26] Maxime Herda,et al. On massless electron limit for a multispecies kinetic system with external magnetic field , 2015, 1504.08139.
[27] Clément Cancès,et al. Numerical analysis of a robust entropy-diminishing Finite Volume scheme for parabolic equations with gradient structure , 2019 .
[28] Francis Filbet,et al. A Finite Volume Scheme for Nonlinear Degenerate Parabolic Equations , 2011, SIAM J. Sci. Comput..
[29] Claire Chainais-Hillairet,et al. ENTROPY-DISSIPATIVE DISCRETIZATION OF NONLINEAR DIFFUSION EQUATIONS AND DISCRETE BECKNER INEQUALITIES ∗ , 2013, 1303.3791.