Effective Positivity Problems for Simple Linear Recurrence Sequences

We consider two computational problems for linear recurrence sequences (LRS) over the integers, namely the Positivity Problem (determine whether all terms of a given LRS are positive) and the effective Ultimate Positivity Problem (determine whether all but finitely many terms of a given LRS are positive, and if so, compute an index threshold beyond which all terms are positive). We show that, for simple LRS (those whose characteristic polynomial has no repeated roots) of order 9 or less, Positivity is decidable, with complexity in the Counting Hierarchy, and effective Ultimate Positivity is solvable in polynomial time.

[1]  Kazuhiro Yokoyama,et al.  Finding roots of unity among quotients of the roots of an integral polynomial , 1995, ISSAC '95.

[2]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[3]  Tero Harju,et al.  Positivity of second order linear recurrent sequences , 2006, Discret. Appl. Math..

[4]  Joël Ouaknine,et al.  Decision Problems for Linear Recurrence Sequences , 2012, RP.

[5]  G. Ladas,et al.  Oscillation Theory of Delay Differential Equations: With Applications , 1992 .

[6]  J. Berstel,et al.  Deux propriétés décidables des suites récurrentes linéaires , 1976 .

[7]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[8]  M. Mignotte Some Useful Bounds , 1983 .

[9]  N. Vereshchagin Occurrence of zero in a linear recursive sequence , 1985 .

[10]  Joël Ouaknine,et al.  Positivity Problems for Low-Order Linear Recurrence Sequences , 2013, SODA.

[11]  Stefan Gerhold,et al.  On the positivity set of a linear recurrence sequence , 2007 .

[12]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[13]  Peter Bro Miltersen,et al.  2 The Task of a Numerical Analyst , 2022 .

[14]  J. Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .

[15]  Joël Ouaknine,et al.  Ultimate Positivity is Decidable for Simple Linear Recurrence Sequences , 2013, ICALP.

[16]  William A. Webb,et al.  Asymptotic behavior of linear recur-rences , 1981 .

[17]  Vichian Laohakosol,et al.  Positivity of third order linear recurrence sequences , 2009, Discret. Appl. Math..

[18]  Lily L. Liu Positivity of Three-Term Recurrence Sequences , 2010, Electron. J. Comb..

[19]  Kenji Nagasaka ASYMPTOTIC POSITIVENESS OF LINEAR RECURRENCE SEQUENCES , 1990 .

[20]  Gisbert Wüstholz,et al.  Logarithmic forms and group varieties. , 1993 .

[21]  George Seifert,et al.  Oscillation Theory of Delay Differential Equations (I. Györi and G. Ladas); Oscillation Theory for Neutral Differential Equations with Delay (D. D. Bainov and D. P. Mishev) , 1993, SIAM Rev..

[22]  W. Schmidt,et al.  Linear equations in variables which Lie in a multiplicative group , 2002 .

[23]  Narong Punnim,et al.  The positivity problem for fourth order linear recurrence sequences is decidable , 2012 .

[24]  Richard J. Lipton,et al.  The Complexity of the A B C Problem , 2000, SIAM J. Comput..

[25]  Between Decidability Skolem's Problem - On the Border , 2005 .

[26]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[27]  Mikhail N. Vyalyi,et al.  Orbits of linear maps and regular languages , 2011 .

[28]  T. Shorey,et al.  The distance between terms of an algebraic recurrence sequence. , 1984 .

[29]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[30]  D. W. Masser New Advances in Transcendence Theory: Linear relations on algebraic groups , 1988 .

[31]  G. Sacks A DECISION METHOD FOR ELEMENTARY ALGEBRA AND GEOMETRY , 2003 .

[32]  Grzegorz Rozenberg,et al.  Cornerstones of undecidability , 1994, Prentice Hall International Series in Computer Science.

[33]  Mark Braverman,et al.  Termination of Integer Linear Programs , 2006, CAV.

[34]  V. Pan Optimal and nearly optimal algorithms for approximating polynomial zeros , 1996 .