Weighted Least Squares Approach for an Adaptive Aerodynamic Engineered Structure With Twist Transformation

[1]  Kathryn E. Johnson,et al.  Adaptive Pitch Control of Variable-Speed Wind Turbines , 2008 .

[2]  David J. Wagg,et al.  Adaptive Structures: Engineering Applications , 2007 .

[3]  Nick Cramer,et al.  Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures , 2016, Soft robotics.

[4]  Lucas I. Lago,et al.  The adaptive-blade concept in wind-power applications , 2014 .

[5]  Daniel J. Inman,et al.  A Review of Morphing Aircraft , 2011 .

[6]  James H. Mabe,et al.  Shape Memory Alloy Based Morphing Aerostructures , 2010 .

[7]  Sung Nam Jung,et al.  Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites , 2010 .

[8]  Niels Kjølstad Poulsen,et al.  Frequency-Weighted Model Predictive Control of Trailing Edge Flaps on a Wind Turbine Blade , 2013, IEEE Transactions on Control Systems Technology.

[9]  Da Rosa,et al.  Fundamentals of renewable energy processes , 2005 .

[10]  Liyong Tong,et al.  Design of Adaptive Cores of Sandwich Structures Using a Compliant Unit Cell Approach and Topology Optimization , 2010 .

[11]  Sung Nam Jung,et al.  Optimal design of a variable-twist proprotor incorporating shape memory alloy hybrid composites , 2011 .

[12]  Ying Wang,et al.  Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades , 2016 .

[13]  Hamid Khakpour Nejadkhaki,et al.  Modeling and Design Method for an Adaptive Wind Turbine Blade With Out-of-Plane Twist , 2018 .

[14]  Yingguang Li,et al.  A novel free-hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures , 2018 .

[15]  Christian Oliver Paschereit,et al.  Active Aerodynamic Control of Wind Turbine Blades with High Deflection Flexible Flaps , 2010 .

[16]  Paul M. Weaver,et al.  Review of morphing concepts and materials for wind turbine blade applications , 2013 .

[17]  Manuel Toledano-Ayala,et al.  Shape Morphing Mechanism for Improving Wind Turbines Performance , 2017 .

[18]  Michael S. Selig,et al.  Morphing Segmented Wind Turbine Concept , 2010 .

[19]  J. A. Carta,et al.  A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands , 2009 .

[20]  Paul M. Weaver,et al.  A novel adaptive blade concept for large-scale wind turbines. Part II: Structural design and power performance , 2014 .

[21]  David Dean,et al.  Three Dimensional Printing of Stiffness-tuned, Nitinol Skeletal Fixation Hardware with an Example of Mandibular Segmental Defect Repair , 2016 .

[22]  Hamid Khakpour Nejadkhaki,et al.  A Design Methodology for a Flexible Wind Turbine Blade With an Actively Variable Twist Distribution to Increase Region 2 Efficiency , 2017, DAC 2017.

[23]  Manfred Morari,et al.  Aero-Structural Optimization of Morphing Airfoils for Adaptive Wings , 2011 .

[24]  P. Weaver,et al.  A morphing trailing edge device for a wind turbine , 2012 .

[25]  Carolyn Conner Seepersad,et al.  Topology design and freeform fabrication of deployable structures with lattice skins , 2011 .

[26]  Hamid Khakpour Nejadkhaki,et al.  Integrative Modeling Platform for Design and Control of an Adaptive Wind Turbine Blade , 2018, Volume 2: Control and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transport.

[27]  Erich Hau,et al.  Wind Turbines: Fundamentals, Technologies, Application, Economics , 1999 .

[28]  Manuel Toledano-Ayala,et al.  Optimizing Wind Turbine Efficiency by Deformable Structures in Smart Blades , 2015 .

[29]  Farhan Gandhi,et al.  Design of Extendable Chord Sections for Morphing Helicopter Rotor Blades , 2011 .

[30]  Fouad Bennis,et al.  A Simplified Morphing Blade for Horizontal Axis Wind Turbines , 2014 .

[31]  Paolo Ermanni,et al.  Aerostructural optimization of a morphing wing for airborne wind energy applications , 2017 .

[32]  Giacomo Frulla,et al.  A variable twist blade concept for more effective wind generation: design and realization , 2016 .

[33]  Sridhar Kota,et al.  Design of Adaptive and Controllable Compliant Systems With Embedded Actuators and Sensors , 2009 .

[34]  Bishakh Bhattacharya,et al.  Multi-Objective Optimization of Piezoelectric Actuator Placement for Shape Control of Plates Using Genetic Algorithms , 2009 .

[35]  Paul M. Weaver,et al.  A novel adaptive blade concept for large-scale wind turbines. Part I: Aeroelastic behaviour , 2014 .

[36]  Terrence A. Weisshaar,et al.  Morphing Aircraft Systems: Historical Perspectives and Future Challenges , 2013 .

[37]  Piotr Wais,et al.  A review of Weibull functions in wind sector , 2017 .

[38]  X Munduate,et al.  Three-Dimensional and Rotational Aerodynamics on the NREL Phase VI Wind Turbine Blade , 2007 .

[39]  Ashwani K. Gupta,et al.  Efficient Wind Energy Conversion: Evolution to Modern Design , 2015 .

[40]  Srinivas Vasista,et al.  Realization of Morphing Wings: A Multidisciplinary Challenge , 2012 .