Real Time Effective Impedance Estimation for Power System State Estimation

This paper introduces two tools-the Effective Impedance State Estimator (EISE), and the Real Time Effective Impedance Estimator (RTEIE). The EISE is novel in that it is an entirely data-driven state estimator, and does not require a network model. Thus, the EISE is well suited for applications in which an accurate network model is not available. Instead of using a network impedance model, the EISE uses an effective impedance network model that is learned online by the RTEIE. The RTEIE recursively estimates the effective impedance network model using phasor measurement unit (PMU) measurements. The mathematical reasoning for using an effective impedance model, rather than a full network impedance model, is given. The recursive estimation framework allows the RTEIE to take the entire history of phasor measurements into account to produce a model estimate, while still adjusting to changes in the network impedance due to external factors such as topology changes and temperature. The merits of the RTEIE and EISE are demonstrated by comparing the accuracy of the EISE with a conventional state estimator on a toy network.

[1]  Fred C. Schweppe,et al.  Power System Static-State Estimation, Part I: Exact Model , 1970 .

[2]  Florian Dörfler,et al.  Kron Reduction of Graphs With Applications to Electrical Networks , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Claire J. Tomlin,et al.  Event detection and localization in distribution grids with phasor measurement units , 2017, 2017 IEEE Power & Energy Society General Meeting.

[4]  S. Mokhtari,et al.  Real time recursive parameter estimation in energy management systems , 1996 .

[5]  A. S. Debs Estimation of Steady-State Power System Model Parameters , 1974 .

[6]  Alexandra von Meier,et al.  Network Impedance Estimation For Microgrid Control Using Noisy Synchrophasor Measurements , 2018, 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL).

[7]  Mohini Bariya,et al.  Empirical Noise Estimation in Distribution Synchrophasor Measurements , 2019, 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA).

[8]  Fred C. Schweppe,et al.  Power System Static-State Estimation, Part III: Implementation , 1970 .

[9]  Javad Lavaei,et al.  Nonlinear Least Absolute Value Estimator for Power Systems State Estimation and Topological Error Detection , 2018 .

[10]  Gabriel Kron,et al.  Tensor analysis of networks , 1967 .

[11]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[12]  V. H. Quintana,et al.  Power system network parameter estimation , 2007 .

[13]  Michael Chertkov,et al.  Exact Topology and Parameter Estimation in Distribution Grids with Minimal Observability , 2017, 2018 Power Systems Computation Conference (PSCC).

[14]  Fred C. Schweppe,et al.  Power System Static-State Estimation, Part II: Approximate Model , 1970 .

[15]  Felix F. Wu,et al.  Power system state estimation: a survey , 1990 .

[16]  Vincent W. S. Wong,et al.  On Identification of Distribution Grids , 2017, IEEE Transactions on Control of Network Systems.

[17]  A. G. Expósito,et al.  Power system parameter estimation: a survey , 2000 .

[18]  Kevin David Jones Synchrophasor-Only Dynamic State Estimation & Data Conditioning , 2013 .

[19]  Felix F. Wu,et al.  Estimation of parameter errors from measurement residuals in state estimation (power systems) , 1992 .