Spectroscopy of synthetic Mg‐Fe pyroxenes I: Spin‐allowed and spin‐forbidden crystal field bands in the visible and near‐infrared

Understanding the fundamental crystal chemical controls on visible and near-infrared reflectance spectra of pyroxenes is critical to quantitatively assessing the mineral chemistry of pyroxenes viewed by remote sensing. This study focuses on the analysis ofspectroscopic measurements of a comprehensive set of synthetic Mg-Fe pyroxenes from the visible through the near-infrared (0.3-2.6 μm) to address the constraints of crystal structure and Fe^2+ content on spin-forbidden and spin-allowed crystal field absorptions in Ca-freeorthopyroxenes. The chemistry and oxidation state of the synthetic pyroxenes are characterized. Coordinated Mssbauer spectroscopy is used to determine site occupancy of Fe^2+ in the M1 and M2 crystallographic sites. Properties of visible and near-infrared absorption bands of the synthetic pyroxenes are quantified using the modified Gaussian model. The 1 and 2 μm spin-allowed crystal field absorption bands move regularly with increasing iron content, defining a much tighter trend than observed previously. A spin-allowed crystal field absorption band at 1.2 μm is explicitly verified, even at low total iron contents, indicating that some portion of Fe^2+ resides in the M1 site. The 1.2 μm band intensifies and shifts to longer wavelengths with increasing iron content. At visible wavelengths, spin-forbidden crystal field absorptions are observed in all iron-bearing samples. The most prominent absorption near 506 nm, attributed to iron in the M2 site, shifts to slightly longer wavelengths with iron content. The purity and extent of this pyroxene series allows visible wavelength absorption bands to be directly assigned to specific transitions of Fe^2+ in the M1 and M2 sites.

[1]  S. Mørup,et al.  Improved computational procedure for evaluation of overlapping hyperfine parameter distributions in Mossbauer spectra , 1981 .

[2]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[3]  C. Pieters,et al.  Remote geochemical analysis : elemental and mineralogical composition , 1993 .

[4]  G. Bancroft Quantitative site population in silicate minerals by the Mössbauer effect , 1970 .

[5]  Richard P. Binzel,et al.  Asteroid spectroscopy: Progress and perspectives , 1993 .

[6]  Z. P. Budka 28th Lunar and Planetary Science Conference. , 1997 .

[7]  R. Vandenberghe,et al.  Study of the temperature dependence of the hyperfine parameters in two orthopyroxenes by 57Fe Mössbauer spectroscopy , 1993 .

[8]  Carle M. Pieters,et al.  METEORITE AND ASTEROID REFLECTANCE SPECTROSCOPY: Clues to Early Solar System Processes , 1994 .

[9]  S. Pratt,et al.  Reflectance spectra of Fe(2+)-Mg(2+) disordered pyroxenes: Implications to remote-sensed spectra of planetary surfaces , 1991 .

[10]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[11]  Carle M. Pieters,et al.  Deconvolution of mineral absorption bands: An improved approach , 1990 .

[12]  G. Rossman,et al.  Determination of quantitative cation distribution in orthopyroxenes from electronic absorption spectra , 1979 .

[13]  S. Ghose Mg2+- Fe2+order in an orthopyroxene, Mg0.93Fe1.07Si2O6 , 1965 .

[14]  Further characterization of spectral features attributable to titanium on the moon. , 1976 .

[15]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .

[16]  F. Huggins,et al.  Polarized absorption spectra of single crystals of lunar pyroxenes and olivines , 1972 .

[17]  D. Virgo,et al.  Cation Distribution and Atomic Thermal Vibrations in an Iron-Rich Orthopyroxene , 1971 .

[18]  C. Coulter,et al.  THE MOSSBAUER EFFECT. , 1966 .

[19]  S. S. Hanna,et al.  Mössbauer Effect in Metallic Iron , 1962 .

[20]  F. Vilas,et al.  Vesta and the Vestoids: A New Rock Group? , 2000 .

[21]  M. Dyar,et al.  Mössbauer Spectroscopy of Earth and Planetary Materials , 2006 .

[22]  A. C. Turnock,et al.  Synthesis and unit cell parameters of Ca-Mg-Fe pyroxenes , 1973 .

[23]  H. Mao,et al.  Effects of compositional variation on absorption spectra of lunar pyroxenes , 1978 .

[24]  G. Bancroft,et al.  Determination of the Cation Distribution in the Orthopyroxene Series by the Mossbauer Effect , 1967, Nature.

[25]  Michael J. Gaffey,et al.  Spectral-compositional variations in the constituent minerals of mafic and ultramafic assemblages and remote sensing implications , 1991 .

[26]  J. Besancon Rate of cation disordering in orthopyroxenes , 1981 .

[27]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[28]  S. Saxena,et al.  Mg2+ -Fe2+ ORDER-DISORDER AND THE THERMODYNAMICS OF THE ORTHO­ PYROXENE CRYSTALLINE SOLUTION , 1971 .

[29]  E. Dowty,et al.  Mössbauer Spectra of Synthetic Hedenbergite-Ferrosilite Pyroxenes , 1973 .

[30]  D. B. Nash,et al.  Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite, and ilmenite , 1974 .

[31]  E. Cloutis Pyroxene reflectance spectra: Minor absorption bands and effects of elemental substitutions , 2002 .

[32]  C. Pieters,et al.  Absorption Band Modeling in Reflectance Spectra: Availability of the Modified Gaussian Model , 1999 .

[33]  S. Saxena,et al.  Iron-magnesium order-disorder in an orthopyroxene crystal from the Johnstown meteorite , 1991 .

[34]  Carle M. Pieters,et al.  Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model , 1993 .

[35]  S. S. Pollack Disordered pyroxene in chondrites. , 1968 .

[36]  A. Morawski,et al.  Spectral evidence for Cr/3+/, Ti/3+/, and Fe/2+/ rather than Cr/2+/ and Fe/3+/ in lunar ferromagnesian silicates , 1973 .

[37]  V. Hamilton Thermal infrared emission spectroscopy of the pyroxene mineral series , 2000 .

[38]  S. Ghose,et al.  Hyperfine Splitting of Fe57 and Mg-Fe Order-Disorder in Orthopyroxenes (MgSiO3-FeSiO3 Solid Solution) , 1967, The Journal of Geology.

[39]  Roger G. Burns,et al.  Mineralogical applications of crystal field theory , 1970 .

[40]  L. Anovitz,et al.  Order-disorder experiments on orthopyroxenes; implications for the orthopyroxene geospeedometer , 1988 .

[41]  D. Virgo,et al.  Fe2+,Mg order-disorder in natural orthopyroxenes , 1970 .

[42]  F. Vilas,et al.  The Changing Spectrum of Vesta: Rotationally Resolved Spectroscopy of Pyroxene on the Surface , 1998 .

[43]  S. Saxena,et al.  Mg/2+/-Fe/2+/ order-disorder and the thermodynamics of the orthopyroxene, /Mg,Fe/SiO3 crystalline solution , 1970 .

[44]  C. Pieters,et al.  Effects of differential recoil-free fraction on ordering and site occupancies in Mössbauer spectroscopy of orthopyroxenes , 2007 .