Error saturation in Gaussian radial basis functions on a finite interval

Radial basis function (RBF) interpolation is a ''meshless'' strategy with great promise for adaptive approximation. One restriction is ''error saturation'' which occurs for many types of RBFs including Gaussian RBFs of the form @f(x;@a,h)=exp([email protected]^2(x/h)^2): in the limit h->0 for fixed @a, the error does not converge to zero, but rather to E"S(@a). Previous studies have theoretically determined the saturation error for Gaussian RBF on an infinite, uniform interval and for the same with a single point omitted. (The gap enormously increases E"S(@a).) We show experimentally that the saturation error on the unit interval, [email protected]?[-1,1], is about 0.06exp(-0.47/@a^2)@[email protected]?"~ - huge compared to the O([email protected]/@a^2)exp([email protected]^2/[[email protected]^2]) saturation error for a grid with one point omitted. We show that the reason the saturation is so large on a finite interval is that it is equivalent to an infinite grid which is uniform except for a gap of many points. The saturation error can be avoided by choosing @[email protected]?1, the ''flat limit'', but the condition number of the interpolation matrix explodes as O(exp(@p^2/[[email protected]^2])). The best strategy is to choose the largest @a which yields an acceptably small saturation error: If the user chooses an error tolerance @d, then @a"o"p"t"i"m"u"m(@d)=1/-2log(@d/0.06).

[1]  Lei Wang,et al.  An analytic approximation to the cardinal functions of Gaussian radial basis functions on an infinite lattice , 2009, Appl. Math. Comput..

[2]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[3]  John P. Boyd,et al.  Exponentially-Convergent Strategies for Defeating the Runge Phenomenon for the Approximation of Non-PeriodicFunctions, PartI:Single-IntervalSchemes , 2009 .

[4]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[5]  On approximate approximations using Gaussian kernelsVladimir , 1996 .

[6]  Bengt Fornberg,et al.  Locality properties of radial basis function expansion coefficients for equispaced interpolation , 2007 .

[7]  Bengt Fornberg,et al.  A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..

[8]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[9]  John P. Boyd,et al.  Six strategies for defeating the Runge Phenomenon in Gaussian radial basis functions on a finite interval , 2010, Comput. Math. Appl..

[10]  John P. Boyd,et al.  Numerical experiments on the condition number of the interpolation matrices for radial basis functions , 2011 .

[11]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[12]  T. Driscoll,et al.  Observations on the behavior of radial basis function approximations near boundaries , 2002 .

[13]  E. Kansa,et al.  Improved multiquadric method for elliptic partial differential equations via PDE collocation on the boundary , 2002 .

[14]  Tobin A. Driscoll,et al.  Polynomials and Potential Theory for Gaussian Radial Basis Function Interpolation , 2005, SIAM J. Numer. Anal..

[15]  Vladimir Maz’ya,et al.  Scattered data approximate approximations , 2007 .

[16]  E. Kansa,et al.  Stable PDE Solution Methods for Large Multiquadric Shape Parameters , 2008 .

[17]  John P. Boyd,et al.  Exponentially-convergent strategies for defeating the Runge Phenomenon for the approximation of non-periodic functions, part two: Multi-interval polynomial schemes and multidomain Chebyshev interpolation , 2011 .

[18]  Lei Wang,et al.  Asymptotic coefficients for Gaussian radial basis function interpolants , 2010, Appl. Math. Comput..

[19]  J. Boyd,et al.  Sensitivity of RBF interpolation on an otherwise uniform grid with a point omitted or slightly shifted , 2010 .

[20]  Bengt Fornberg,et al.  Accuracy of radial basis function interpolation and derivative approximations on 1-D infinite grids , 2005, Adv. Comput. Math..

[21]  Bengt Fornberg,et al.  The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..

[22]  Natasha Flyer,et al.  A radial basis function method for the shallow water equations on a sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Alexander I. Fedoseyev,et al.  Continuation for nonlinear Elliptic Partial differential equations discretized by the multiquadric Method , 2000, Int. J. Bifurc. Chaos.

[24]  Lei Wang,et al.  Truncated Gaussian RBF Differences are Always InferiortoFiniteDifferencesof theSame StencilWidth , 2009 .

[25]  Tobin A. Driscoll,et al.  Adaptive residual subsampling methods for radial basis function interpolation and collocation problems , 2007, Comput. Math. Appl..

[26]  Gregory E. Fasshauer,et al.  Newton iteration with multiquadrics for the solution of nonlinear PDEs , 2002 .

[27]  P. Nair,et al.  Unsymmetric and symmetric meshless schemes for the unsteady convection–diffusion equation , 2006 .

[28]  Holger Wendland,et al.  Kernel techniques: From machine learning to meshless methods , 2006, Acta Numerica.