Chapter 2. Material Characterization

[1]  C. Comi,et al.  Mechanical characterization of polysilicon through on-chip tensile tests , 2004, Journal of Microelectromechanical Systems.

[2]  Jörg Bagdahn,et al.  Fatigue testing of polysilicon––a review , 2004 .

[3]  A. Mann Nanomechanical Properties of Solid Surfaces and Thin Films , 2004 .

[4]  J. W. Rogers,et al.  A thermomechanical model for adhesion reduction of MEMS cantilevers , 2002 .

[5]  Yoshitada Isono,et al.  Plastic deformation of nanometric single crystal silicon wire in AFM bending test at intermediate temperatures , 2002 .

[6]  O. Paul,et al.  Postbuckled micromachined square membranes under differential pressure , 2002 .

[7]  M. A. Haque,et al.  Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM , 2002 .

[8]  Mitsuhiro Shikida,et al.  Tensile Testing System for Sub-Micrometer Thick Films , 2002 .

[9]  Oliver Paul,et al.  Fracture Properties of LPCVD Silicon Nitride Thin Films from the Load-Deflection of Long Membranes , 2002 .

[10]  M. Strasser,et al.  Miniaturized Thermoelectric Generators Based on Poly-Si and Poly-SiGe Surface Micromachining , 2002 .

[11]  Ben-Je Lwo,et al.  On the Study of Piezoresistive Stress Sensors for Microelectronic Packaging , 2002 .

[12]  Temperature-dependent thermal conductivities of CMOS layers by micromachined thermal van der Pauw test structures , 2002 .

[13]  Richard C. Jaeger,et al.  Piezoresistive characteristics of short-channel MOSFETs on (100) silicon , 2001 .

[14]  K. Goodson,et al.  THERMAL CONDUCTIVITY OF DOPED POLYSILICON LAYERS , 2001, Proceeding of Heat Transfer and Transport Phenomena in Microscale.

[15]  Mitsuhiro Shikida,et al.  Tensile-mode fatigue testing of silicon films as structural materials for MEMS , 2001 .

[16]  Surface micromachined ring test structures to determine mechanical properties of compressive thin films , 2001 .

[17]  M. P. Boer,et al.  Tribology of MEMS , 2001 .

[18]  Claude A. Klein,et al.  How accurate are Stoney’s equation and recent modifications , 2000 .

[19]  O. Paul,et al.  Process-dependent thin-film thermal conductivities for thermal CMOS MEMS , 2000, Journal of Microelectromechanical Systems.

[20]  H. Baltes,et al.  Strongly buckled square micromachined membranes , 1999 .

[21]  Henry Baltes,et al.  Stress analysis of a standard CMOS process , 1999, Smart Materials, Nano-, and Micro- Smart Systems.

[22]  T. Tsuchiya,et al.  Tensile testing of insulating thin films; humidity effect on tensile strength of SiO2 films , 1999 .

[23]  Fernando Bitsie,et al.  Small-area in-situ MEMS test structure to measure fracture strength by electrostatic probing , 1999, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[24]  S. Johansson,et al.  Mechanical characterization of thick polysilicon films: Young's modulus and fracture strength evaluated with microstructures , 1999 .

[25]  F. Ebrahimi,et al.  Fracture anisotropy in silicon single crystal , 1999 .

[26]  H. Baltes,et al.  Integrated temperature microsensors for characterization and optimization of thermosonic ball bonding process , 1999, 1999 Proceedings. 49th Electronic Components and Technology Conference (Cat. No.99CH36299).

[27]  L. B. Freund,et al.  Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations , 1999 .

[28]  Oliver Paul,et al.  A CMOS-compatible device for fluid density measurements fabricated by sacrificial aluminium etching , 1999 .

[29]  Oliver Paul,et al.  A thermal van der Pauw test structure , 1999, ICMTS 1999. Proceedings of 1999 International Conference on Microelectronic Test Structures (Cat. No.99CH36307).

[30]  H. Baltes,et al.  Mechanical behavior and sound generation efficiency of prestressed, elastically clamped and thermomechanically driven thin film sandwiches , 1999 .

[31]  K. Takashima,et al.  Fatigue Testing Machine of Micro-Sized Specimens for MEMS Applications , 1999 .

[32]  William Redman-White,et al.  Measurement of buried oxide thermal conductivity for accurate electrothermal simulation of SOI device , 1999 .

[33]  A. Karimi,et al.  Comparison of mechanical properties of TiN thin films using nanoindentation and bulge test , 1998 .

[34]  M. Shikida,et al.  Tensile testing of silicon film having different crystallographic orientations carried out on a silicon chip , 1998 .

[35]  Oliver Paul,et al.  Mechanical properties of thin films from the load deflection of long clamped plates , 1998 .

[36]  Buckling of polysilicon microbeams during sacrificial layer removal , 1998 .

[37]  Pasqualina M. Sarro,et al.  Determination of mechanical material properties of piezoelectric ZnO films , 1998, Smart Structures.

[38]  O. Tabata,et al.  Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films , 1998 .

[39]  J. Dugundji,et al.  Large Deflections of Clamped Circular Plates Under Initial Tension and Transitions to Membrane Behavior , 1998 .

[40]  Extraction of the Coefficient of Thermal Expansion of Thin Films from Buckled Membranes , 1998 .

[41]  Shefford P. Baker,et al.  Between nanoindentation and scanning force microscopy: measuring mechanical properties in the nanometer regime , 1997 .

[42]  Eric Bonnotte,et al.  Two interferometric methods for the mechanical characterization of thin films by bulging tests. Application to single crystal of silicon , 1997 .

[43]  S. Senturia,et al.  M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures , 1997 .

[44]  Test structures to measure the heat capacity of CMOS layer sandwiches , 1997, 1997 IEEE International Conference on Microelectronic Test Structures Proceedings.

[45]  Seungmin Lee,et al.  Heat transport in thin dielectric films , 1997 .

[46]  G. Stemme,et al.  Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors , 1997 .

[47]  L. Mayer Überlegungen zum aktuellen interkulturellen Diskurs der frankophonen Literatur Marokkos am Beispiel Tahar Ben Jellouns und Abdelkebir Khatibis , 1997 .

[48]  T. Tsuchiya,et al.  Tensile strength and fracture toughness of surface micromachined polycrystalline silicon thin films prepared under various conditions , 1997 .

[49]  H. Baltes,et al.  A Novel Method to Measure Poisson's Ratio of Thin Films , 1997 .

[50]  O. Paul,et al.  Test structures to measure the Seebeck coefficient of CMOS IC polysilicon , 1996, Proceedings of International Conference on Microelectronic Test Structures.

[51]  J. Maibach,et al.  A new analytical solution for the load-deflection of square membranes , 1995 .

[52]  J. Maibach,et al.  Variations in Young's modulus and intrinsic stress of LPCVD-polysilicon due to high-temperature annealing , 1995 .

[53]  R. Barry Johnson,et al.  Flat-panel thermal infrared scene generator , 1994, Optics & Photonics.

[54]  Jan G. Korvink,et al.  Determination of the thermal conductivity of CMOS IC polysilicon , 1994 .

[55]  S. K. Watson,et al.  Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K , 1994 .

[56]  L. T. Su,et al.  Annealing-temperature dependence of the thermal conductivity of LPCVD silicon-dioxide layers , 1993, IEEE Electron Device Letters.

[57]  R. Barry Johnson,et al.  Commercial CMOS foundry thermal display for dynamic thermal scene simulation , 1993, Defense, Security, and Sensing.

[58]  Jan Söderkvist,et al.  Similarities between piezoelectric, thermal and other internal means of exciting vibrations , 1993 .

[59]  D. A. Stevenson,et al.  Modeling of the Blister Test to Express Adhesive Strength in Terms of Measurable Quantities , 1993 .

[60]  James N. Sweet,et al.  Die Stress Measurement Using Piezoresistive Stress Sensors , 1993 .

[61]  Silicon Surface Micromachined Structures for the Stress Measurement of Thin Films , 1993 .

[62]  F. Volklein,et al.  A Microstructure For Measurement Of Thermal Conductivity Of Polysilicon Thin Films , 1992 .

[63]  M. Stadtmüeller Mechanical Stress of CVD‐Dielectrics , 1992 .

[64]  Joost J. Vlassak,et al.  A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films , 1992 .

[65]  J. Maibach,et al.  Computer-aided characterization of the elastic properties of thin films , 1992 .

[66]  D. W. Burns,et al.  Diagnostic microstructures for the measurement of intrinsic strain in thin films , 1992 .

[67]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[68]  F. Brotzen,et al.  Thermal conductivity of thin SiO2 films , 1992 .

[69]  D. Fahnline Effect of Initial Substrate Curvature on Nonlinear Bending Measurements of Thin-Film Stress. , 1991 .

[70]  Joost J. Vlassak,et al.  Re-Examining the Bulge Test: Methods for Improving Accuracy and Reliability , 1991 .

[71]  F. Völklein,et al.  Thermal conductivity and diffusivity of a thin film SiO2Si3N4 sandwich system , 1990 .

[72]  Yu-Chong Tai,et al.  Thermophysical properties of low-residual stress, Silicon-rich, LPCVD silicon nitride films , 1990 .

[73]  D. Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .

[74]  O. Tabata,et al.  Mechanical property measurements of thin films using load-deflection of composite rectangular membranes , 1989 .

[75]  William D. Nix,et al.  Mechanical properties of thin films , 1989 .

[76]  Yu-Chong Tai,et al.  Thermal conductivity of heavily doped low‐pressure chemical vapor deposited polycrystalline silicon films , 1988 .

[77]  S. A. Gee,et al.  The Design And Calibration Of A Semiconductor Strain Gauge Array , 1988, Proceedings of the IEEE International Conference on Microelectronic Test Structures.

[78]  P. Flinn Principles and Applications of Wafer Curvature Techniques for Stress Measurements in Thin Films , 1988 .

[79]  Pohl,et al.  Thermal conductivity of amorphous solids above the plateau. , 1987, Physical review. B, Condensed matter.

[80]  Pasqualina M. Sarro,et al.  Thermal sensors based on the seebeck effect , 1986 .

[81]  G. Smolinsky,et al.  Measurements of Temperature Dependent Stress of Silicon Oxide Films Prepared by a Variety of CVD Methods , 1985 .

[82]  A. W. van Herwaarden,et al.  The seebeck effect in silicon ICs , 1984 .

[83]  R. Jones,et al.  Electrical, thermoelectric, and optical properties of strongly degenerate polycrystalline silicon films , 1984 .

[84]  R. Mountain,et al.  A technique for the determination of stress in thin films , 1983 .

[85]  K.E. Petersen,et al.  Silicon as a mechanical material , 1982, Proceedings of the IEEE.

[86]  Y. Kanda,et al.  A graphical representation of the piezoresistance coefficients in silicon , 1982, IEEE Transactions on Electron Devices.

[87]  I. Eisele Stress and intersubband correlation in the silicon inversion layer , 1978 .

[88]  W. Pietrenko Einfluß von Temperatur und Störstellenkonzentration auf den Piezowiderstandseffekt in n‐Silizium , 1977 .

[89]  Martin G. Buehler,et al.  A numerical analysis of various cross sheet resistor test structures , 1977 .

[90]  G. Dorda,et al.  Piezoresistance in n‐type silicon inversion layers at low temperatures , 1973 .

[91]  O. N. Tufte,et al.  Piezoresistive Properties of Silicon Diffused Layers , 1963 .

[92]  T. Geballe,et al.  Seebeck Effect in Silicon , 1955 .

[93]  Charles S. Smith Piezoresistance Effect in Germanium and Silicon , 1954 .

[94]  H. J. Mcskimin Measurement of Elastic Constants at Low Temperatures by Means of Ultrasonic Waves–Data for Silicon and Germanium Single Crystals, and for Fused Silica , 1953 .

[95]  C. Zener INTERNAL FRICTION IN SOLIDS. I. THEORY OF INTERNAL FRICTION IN REEDS , 1937 .

[96]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .