Chapter 2. Material Characterization
暂无分享,去创建一个
[1] C. Comi,et al. Mechanical characterization of polysilicon through on-chip tensile tests , 2004, Journal of Microelectromechanical Systems.
[2] Jörg Bagdahn,et al. Fatigue testing of polysilicon––a review , 2004 .
[3] A. Mann. Nanomechanical Properties of Solid Surfaces and Thin Films , 2004 .
[4] J. W. Rogers,et al. A thermomechanical model for adhesion reduction of MEMS cantilevers , 2002 .
[5] Yoshitada Isono,et al. Plastic deformation of nanometric single crystal silicon wire in AFM bending test at intermediate temperatures , 2002 .
[6] O. Paul,et al. Postbuckled micromachined square membranes under differential pressure , 2002 .
[7] M. A. Haque,et al. Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM , 2002 .
[8] Mitsuhiro Shikida,et al. Tensile Testing System for Sub-Micrometer Thick Films , 2002 .
[9] Oliver Paul,et al. Fracture Properties of LPCVD Silicon Nitride Thin Films from the Load-Deflection of Long Membranes , 2002 .
[10] M. Strasser,et al. Miniaturized Thermoelectric Generators Based on Poly-Si and Poly-SiGe Surface Micromachining , 2002 .
[11] Ben-Je Lwo,et al. On the Study of Piezoresistive Stress Sensors for Microelectronic Packaging , 2002 .
[12] Temperature-dependent thermal conductivities of CMOS layers by micromachined thermal van der Pauw test structures , 2002 .
[13] Richard C. Jaeger,et al. Piezoresistive characteristics of short-channel MOSFETs on (100) silicon , 2001 .
[14] K. Goodson,et al. THERMAL CONDUCTIVITY OF DOPED POLYSILICON LAYERS , 2001, Proceeding of Heat Transfer and Transport Phenomena in Microscale.
[15] Mitsuhiro Shikida,et al. Tensile-mode fatigue testing of silicon films as structural materials for MEMS , 2001 .
[16] Surface micromachined ring test structures to determine mechanical properties of compressive thin films , 2001 .
[17] M. P. Boer,et al. Tribology of MEMS , 2001 .
[18] Claude A. Klein,et al. How accurate are Stoney’s equation and recent modifications , 2000 .
[19] O. Paul,et al. Process-dependent thin-film thermal conductivities for thermal CMOS MEMS , 2000, Journal of Microelectromechanical Systems.
[20] H. Baltes,et al. Strongly buckled square micromachined membranes , 1999 .
[21] Henry Baltes,et al. Stress analysis of a standard CMOS process , 1999, Smart Materials, Nano-, and Micro- Smart Systems.
[22] T. Tsuchiya,et al. Tensile testing of insulating thin films; humidity effect on tensile strength of SiO2 films , 1999 .
[23] Fernando Bitsie,et al. Small-area in-situ MEMS test structure to measure fracture strength by electrostatic probing , 1999, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.
[24] S. Johansson,et al. Mechanical characterization of thick polysilicon films: Young's modulus and fracture strength evaluated with microstructures , 1999 .
[25] F. Ebrahimi,et al. Fracture anisotropy in silicon single crystal , 1999 .
[26] H. Baltes,et al. Integrated temperature microsensors for characterization and optimization of thermosonic ball bonding process , 1999, 1999 Proceedings. 49th Electronic Components and Technology Conference (Cat. No.99CH36299).
[27] L. B. Freund,et al. Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations , 1999 .
[28] Oliver Paul,et al. A CMOS-compatible device for fluid density measurements fabricated by sacrificial aluminium etching , 1999 .
[29] Oliver Paul,et al. A thermal van der Pauw test structure , 1999, ICMTS 1999. Proceedings of 1999 International Conference on Microelectronic Test Structures (Cat. No.99CH36307).
[30] H. Baltes,et al. Mechanical behavior and sound generation efficiency of prestressed, elastically clamped and thermomechanically driven thin film sandwiches , 1999 .
[31] K. Takashima,et al. Fatigue Testing Machine of Micro-Sized Specimens for MEMS Applications , 1999 .
[32] William Redman-White,et al. Measurement of buried oxide thermal conductivity for accurate electrothermal simulation of SOI device , 1999 .
[33] A. Karimi,et al. Comparison of mechanical properties of TiN thin films using nanoindentation and bulge test , 1998 .
[34] M. Shikida,et al. Tensile testing of silicon film having different crystallographic orientations carried out on a silicon chip , 1998 .
[35] Oliver Paul,et al. Mechanical properties of thin films from the load deflection of long clamped plates , 1998 .
[36] Buckling of polysilicon microbeams during sacrificial layer removal , 1998 .
[37] Pasqualina M. Sarro,et al. Determination of mechanical material properties of piezoelectric ZnO films , 1998, Smart Structures.
[38] O. Tabata,et al. Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films , 1998 .
[39] J. Dugundji,et al. Large Deflections of Clamped Circular Plates Under Initial Tension and Transitions to Membrane Behavior , 1998 .
[40] Extraction of the Coefficient of Thermal Expansion of Thin Films from Buckled Membranes , 1998 .
[41] Shefford P. Baker,et al. Between nanoindentation and scanning force microscopy: measuring mechanical properties in the nanometer regime , 1997 .
[42] Eric Bonnotte,et al. Two interferometric methods for the mechanical characterization of thin films by bulging tests. Application to single crystal of silicon , 1997 .
[43] S. Senturia,et al. M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures , 1997 .
[44] Test structures to measure the heat capacity of CMOS layer sandwiches , 1997, 1997 IEEE International Conference on Microelectronic Test Structures Proceedings.
[45] Seungmin Lee,et al. Heat transport in thin dielectric films , 1997 .
[46] G. Stemme,et al. Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors , 1997 .
[47] L. Mayer. Überlegungen zum aktuellen interkulturellen Diskurs der frankophonen Literatur Marokkos am Beispiel Tahar Ben Jellouns und Abdelkebir Khatibis , 1997 .
[48] T. Tsuchiya,et al. Tensile strength and fracture toughness of surface micromachined polycrystalline silicon thin films prepared under various conditions , 1997 .
[49] H. Baltes,et al. A Novel Method to Measure Poisson's Ratio of Thin Films , 1997 .
[50] O. Paul,et al. Test structures to measure the Seebeck coefficient of CMOS IC polysilicon , 1996, Proceedings of International Conference on Microelectronic Test Structures.
[51] J. Maibach,et al. A new analytical solution for the load-deflection of square membranes , 1995 .
[52] J. Maibach,et al. Variations in Young's modulus and intrinsic stress of LPCVD-polysilicon due to high-temperature annealing , 1995 .
[53] R. Barry Johnson,et al. Flat-panel thermal infrared scene generator , 1994, Optics & Photonics.
[54] Jan G. Korvink,et al. Determination of the thermal conductivity of CMOS IC polysilicon , 1994 .
[55] S. K. Watson,et al. Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K , 1994 .
[56] L. T. Su,et al. Annealing-temperature dependence of the thermal conductivity of LPCVD silicon-dioxide layers , 1993, IEEE Electron Device Letters.
[57] R. Barry Johnson,et al. Commercial CMOS foundry thermal display for dynamic thermal scene simulation , 1993, Defense, Security, and Sensing.
[58] Jan Söderkvist,et al. Similarities between piezoelectric, thermal and other internal means of exciting vibrations , 1993 .
[59] D. A. Stevenson,et al. Modeling of the Blister Test to Express Adhesive Strength in Terms of Measurable Quantities , 1993 .
[60] James N. Sweet,et al. Die Stress Measurement Using Piezoresistive Stress Sensors , 1993 .
[61] Silicon Surface Micromachined Structures for the Stress Measurement of Thin Films , 1993 .
[62] F. Volklein,et al. A Microstructure For Measurement Of Thermal Conductivity Of Polysilicon Thin Films , 1992 .
[63] M. Stadtmüeller. Mechanical Stress of CVD‐Dielectrics , 1992 .
[64] Joost J. Vlassak,et al. A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films , 1992 .
[65] J. Maibach,et al. Computer-aided characterization of the elastic properties of thin films , 1992 .
[66] D. W. Burns,et al. Diagnostic microstructures for the measurement of intrinsic strain in thin films , 1992 .
[67] G. Pharr,et al. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .
[68] F. Brotzen,et al. Thermal conductivity of thin SiO2 films , 1992 .
[69] D. Fahnline. Effect of Initial Substrate Curvature on Nonlinear Bending Measurements of Thin-Film Stress. , 1991 .
[70] Joost J. Vlassak,et al. Re-Examining the Bulge Test: Methods for Improving Accuracy and Reliability , 1991 .
[71] F. Völklein,et al. Thermal conductivity and diffusivity of a thin film SiO2Si3N4 sandwich system , 1990 .
[72] Yu-Chong Tai,et al. Thermophysical properties of low-residual stress, Silicon-rich, LPCVD silicon nitride films , 1990 .
[73] D. Cahill. Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .
[74] O. Tabata,et al. Mechanical property measurements of thin films using load-deflection of composite rectangular membranes , 1989 .
[75] William D. Nix,et al. Mechanical properties of thin films , 1989 .
[76] Yu-Chong Tai,et al. Thermal conductivity of heavily doped low‐pressure chemical vapor deposited polycrystalline silicon films , 1988 .
[77] S. A. Gee,et al. The Design And Calibration Of A Semiconductor Strain Gauge Array , 1988, Proceedings of the IEEE International Conference on Microelectronic Test Structures.
[78] P. Flinn. Principles and Applications of Wafer Curvature Techniques for Stress Measurements in Thin Films , 1988 .
[79] Pohl,et al. Thermal conductivity of amorphous solids above the plateau. , 1987, Physical review. B, Condensed matter.
[80] Pasqualina M. Sarro,et al. Thermal sensors based on the seebeck effect , 1986 .
[81] G. Smolinsky,et al. Measurements of Temperature Dependent Stress of Silicon Oxide Films Prepared by a Variety of CVD Methods , 1985 .
[82] A. W. van Herwaarden,et al. The seebeck effect in silicon ICs , 1984 .
[83] R. Jones,et al. Electrical, thermoelectric, and optical properties of strongly degenerate polycrystalline silicon films , 1984 .
[84] R. Mountain,et al. A technique for the determination of stress in thin films , 1983 .
[85] K.E. Petersen,et al. Silicon as a mechanical material , 1982, Proceedings of the IEEE.
[86] Y. Kanda,et al. A graphical representation of the piezoresistance coefficients in silicon , 1982, IEEE Transactions on Electron Devices.
[87] I. Eisele. Stress and intersubband correlation in the silicon inversion layer , 1978 .
[88] W. Pietrenko. Einfluß von Temperatur und Störstellenkonzentration auf den Piezowiderstandseffekt in n‐Silizium , 1977 .
[89] Martin G. Buehler,et al. A numerical analysis of various cross sheet resistor test structures , 1977 .
[90] G. Dorda,et al. Piezoresistance in n‐type silicon inversion layers at low temperatures , 1973 .
[91] O. N. Tufte,et al. Piezoresistive Properties of Silicon Diffused Layers , 1963 .
[92] T. Geballe,et al. Seebeck Effect in Silicon , 1955 .
[93] Charles S. Smith. Piezoresistance Effect in Germanium and Silicon , 1954 .
[94] H. J. Mcskimin. Measurement of Elastic Constants at Low Temperatures by Means of Ultrasonic Waves–Data for Silicon and Germanium Single Crystals, and for Fused Silica , 1953 .
[95] C. Zener. INTERNAL FRICTION IN SOLIDS. I. THEORY OF INTERNAL FRICTION IN REEDS , 1937 .
[96] L. Onsager. Reciprocal Relations in Irreversible Processes. II. , 1931 .