On simple oversampled A/D conversion in shift-invariant spaces

It has been found that the quantization error e for a conventional oversampled analog-to-digital (A/D) conversion behaves like /spl par/e/spl par//sup 2/=O(/spl tau//sup 2/) with respect to the sampling rate /spl tau/. Recently, conventional A/D conversion has been extended to A/D conversion based on shift-invariant spaces. As consequences of such extension, it offers rich choices to build a nonideal A/D conversion system of high accuracy and low computational complexity, as well as reduces the noise sensitivity and computational complexity in digital-to-analog (D/A) conversion. Therefore, it is necessary to establish the estimate of quantization error for the extended A/D conversion based on shift-invariant spaces. In this paper, we introduce a constructive method to establish an estimate of the quantization error as |e|/sup 2/=O(/spl tau//sup 2/) for oversampled A/D conversion in shift-invariant spaces. Meanwhile, we demonstrate that the bit rate required to encode the converted digital signal in such A/D conversion scheme only increases as the logarithm of the sampling ratio. Therefore, the quantization error is an exponentially decaying function of the bit rate. In order to establish such an estimate, we need the nonuniform sampling theorem for shift-invariant spaces, which, as the necessary preparation, is studied prior to introducing the constructive method.

[1]  R. DeVore,et al.  The Structure of Finitely Generated Shift-Invariant Spaces in , 1992 .

[2]  Michael Unser,et al.  A general sampling theory for nonideal acquisition devices , 1994, IEEE Trans. Signal Process..

[3]  Vivek K Goyal,et al.  Quantized Frame Expansions with Erasures , 2001 .

[4]  Shuichi Itoh,et al.  Oversampling Theorem for Wavelet Subspace , 1998 .

[5]  J. A. Parker,et al.  Comparison of Interpolating Methods for Image Resampling , 1983, IEEE Transactions on Medical Imaging.

[6]  Youming Liu Irregular Sampling for Spline Wavelet Subspaces , 1996, IEEE Trans. Inf. Theory.

[7]  Cormac Herley,et al.  Minimum rate sampling and reconstruction of signals with arbitrary frequency support , 1999, IEEE Trans. Inf. Theory.

[8]  A. Aldroubi Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces , 2002 .

[9]  Vivek K Goyal,et al.  Multiple description transform coding: robustness to erasures using tight frame expansions , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[10]  R. Jia Shift-invariant spaces and linear operator equations , 1998 .

[11]  E. Cheney,et al.  Approximation from shift-invariant spaces by integral operators , 1997 .

[12]  H. Feichtinger,et al.  Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: The $L^p$-theory , 1998 .

[13]  L. Carleson,et al.  The Collected Works of Arne Beurling , 1989 .

[14]  A. J. Jerri Correction to "The Shannon sampling theorem—Its various extensions and applications: A tutorial review" , 1979 .

[15]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[16]  Vivek K. Goyal,et al.  Quantized frame expansions as source-channel codes for erasure channels , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).

[17]  John J. Benedetto,et al.  Wavelet periodicity detection algorithms , 1998, Optics & Photonics.

[18]  Xiang-Gen Xia,et al.  On sampling theorem, wavelets, and wavelet transforms , 1993, IEEE Trans. Signal Process..

[19]  WEN CHEN,et al.  IMPROVING THE ACCURACY ESTIMATE FOR THE FIRST ORDER SIGMA-DELTA MODULATOR , .

[20]  G. Walter,et al.  Irregular Sampling in Wavelet Subspaces , 1995 .

[21]  P. F. Panter,et al.  PCM distortion analysis , 1947, Electrical Engineering.

[22]  Bin Han,et al.  Maximal gap of a sampling set for the exact iterative reconstruction algorithm in shift invariant spaces , 2004, IEEE Signal Processing Letters.

[23]  A. J. Jerri The Shannon sampling theorem—Its various extensions and applications: A tutorial review , 1977, Proceedings of the IEEE.

[24]  H. Landau Necessary density conditions for sampling and interpolation of certain entire functions , 1967 .

[25]  Martin Vetterli,et al.  Error-Rate Characteristics of Oversampled Analog-to-Digital Conversion , 1998, IEEE Trans. Inf. Theory.

[26]  Shuichi Itoh,et al.  Some Notes on Reconstructing Regularly Sampled Signal by Scaling Function with Oversampling Property , 1998 .

[27]  Ingrid Daubechies,et al.  Single-bit oversampled A/D conversion with exponential accuracy in the bit-rate , 2000, Proceedings DCC 2000. Data Compression Conference.

[28]  Shuichi Itoh,et al.  A sampling theorem for shift-invariant subspace , 1998, IEEE Trans. Signal Process..

[29]  J. Lei Lp-Approximation by Certain Projection Operators , 1994 .

[30]  Robert J. Marks,et al.  Advanced topics in Shannon sampling and interpolation theory , 1993 .

[31]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[32]  Wu Chou,et al.  Quantization noise in single-loop sigma-delta modulation with sinusoidal inputs , 1989, IEEE Trans. Commun..

[33]  Edmund Taylor Whittaker XVIII.—On the Functions which are represented by the Expansions of the Interpolation-Theory , 1915 .

[34]  Karlheinz Gröchenig,et al.  On Landau's Necessary Density Conditions for Sampling and Interpolation of Band-Limited Functions , 1996 .

[35]  C. S. Gunturk,et al.  Approximating a bandlimited function using very coarsely quantized data: Improved error estimates in sigma-delta modulation , 2003 .

[36]  R. Young,et al.  An introduction to non-harmonic Fourier series , 2001 .

[37]  H. Feichtinger Generalized Amalgams, With Applications to Fourier Transform , 1990, Canadian Journal of Mathematics.

[38]  R. Jia,et al.  Approximation by multiinteger translates of functions having global support , 1993 .

[39]  Richard H. Sherman,et al.  Chaotic communications in the presence of noise , 1993, Optics & Photonics.

[40]  Augustus J. E. M. Janssen,et al.  The Zak transform and sampling theorems for wavelet subspaces , 1993, IEEE Trans. Signal Process..

[41]  K. Gröchenig,et al.  Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces , 2000 .

[42]  K. Gröchenig RECONSTRUCTION ALGORITHMS IN IRREGULAR SAMPLING , 1992 .

[43]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[44]  Martin Vetterli,et al.  Reduction of the MSE in R-times oversampled A/D conversion O(1/R) to O(1/R2) , 1994, IEEE Trans. Signal Process..

[45]  Bin Han,et al.  Estimate of aliasing error for non-smooth signals prefiltered by quasi-projections into shift-invariant spaces , 2005, IEEE Transactions on Signal Processing.

[46]  D. Slepian,et al.  On bandwidth , 1976, Proceedings of the IEEE.

[47]  Stéphane Jaffard Propriétés des matrices « bien localisées » près de leur diagonale et quelques applications , 1990 .

[48]  J. Stewart,et al.  Amalgams of $L^p$ and $l^q$ , 1985 .

[49]  K. Gröchenig Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator , 2004 .

[50]  I. Daubechies,et al.  Approximating a bandlimited function using very coarsely quantized data: A family of stable sigma-delta modulators of arbitrary order , 2003 .

[51]  David J. DeFatta,et al.  Digital Signal Processing: A System Design Approach , 1988 .

[52]  Robert M. Gray,et al.  Spectral analysis of quantization noise in a single-loop sigma-delta modulator with DC input , 1989, IEEE Trans. Commun..

[53]  Xiang-Gen Xia,et al.  On Orthogonal Wavelets with the Oversampling Property , 1994 .

[54]  Rong-Qing Jia,et al.  Approximation with scaled shift-invariant spaces by means of quasi-projection operators , 2004, J. Approx. Theory.

[55]  Vivek K Goyal Quantized Overcomplete Expansions : Analysis , Synthesis and Algorithms , 1995 .

[56]  Gilbert G. Walter,et al.  A sampling theorem for wavelet subspaces , 1992, IEEE Trans. Inf. Theory.

[57]  Gilbert G. Walter,et al.  Wavelet subspaces with an oversampling property , 1993 .

[58]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[59]  Akram Aldroubi,et al.  Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..

[60]  Shuichi Itoh,et al.  On sampling in shift invariant spaces , 2002, IEEE Trans. Inf. Theory.

[61]  A. G. Clavier,et al.  Distortion in a Pulse Count Modulation System , 1947, Transactions of the American Institute of Electrical Engineers.

[62]  W. R. Bennett,et al.  Spectra of quantized signals , 1948, Bell Syst. Tech. J..

[63]  Martin Vetterli,et al.  Deterministic analysis of oversampled A/D conversion and decoding improvement based on consistent estimates , 1994, IEEE Trans. Signal Process..

[64]  H. Feichtinger,et al.  Iterative reconstruction of multivariate band-limited functions from irregular sampling values , 1992 .

[65]  John J. Benedetto,et al.  Wavelet analysis of spectrogram seizure chirps , 1995, Optics + Photonics.

[66]  A. Aldroubi,et al.  Sampling procedures in function spaces and asymptotic equivalence with shannon's sampling theory , 1994 .

[67]  L. Squire,et al.  Amalgams of Lᴾ and ℓ^q , 1984 .

[68]  Martin Vetterli,et al.  On Simple Oversampled A/D Conversion in , 2001 .

[69]  Shuichi Itoh,et al.  Irregular Sampling Theorems for Wavelet Subspaces , 1998, IEEE Trans. Inf. Theory.