On quantumness in multi-parameter quantum estimation

In this article we derive a measure of quantumness in quantum multi-parameter estimation problems. We can show that the ratio between the mean Uhlmann Curvature and the Fisher Information provides a figure of merit which estimates the amount of incompatibility arising from the quantum nature of the underlying physical system. This ratio accounts for the discrepancy between the attainable precision in the simultaneous estimation of multiple parameters and the precision predicted by the Cram\'er-Rao bound. As a testbed for this concept, we consider a quantum many-body system in thermal equilibrium, and explore the quantum compatibility of the model across its phase diagram.

[1]  Bernardo Spagnolo,et al.  Stabilization Effects of Dichotomous Noise on the Lifetime of theSuperconducting State in a Long Josephson Junction , 2015, Entropy.

[2]  Jan Meijer,et al.  Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor , 2017, Science.

[3]  S. Haas,et al.  Fidelity in topological quantum phases of matter , 2009, 0901.3807.

[4]  Bernardo Spagnolo,et al.  Noise-induced effects in nonlinear relaxation of condensed matter systems , 2015 .

[5]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[6]  S. Haas,et al.  Fidelity approach to the disordered quantum XY model. , 2008, Physical review letters.

[7]  P. Zanardi,et al.  Fidelity approach to the Hubbard model , 2008, 0801.2473.

[8]  A. Carollo,et al.  Quantum dissipative dynamics of a bistable system in the sub-Ohmic to super-Ohmic regime , 2015, 1510.05624.

[9]  Mankei Tsang,et al.  Quantum theory of superresolution for two incoherent optical point sources , 2015, 1511.00552.

[10]  Mankei Tsang,et al.  Far-Field Superresolution of Thermal Electromagnetic Sources at the Quantum Limit. , 2016, Physical review letters.

[11]  J. Kahn,et al.  Local Asymptotic Normality for Finite Dimensional Quantum Systems , 2008, 0804.3876.

[12]  Animesh Datta,et al.  Quantum Enhanced Estimation of a Multidimensional Field. , 2015, Physical review letters.

[13]  Giuseppe Mussardo,et al.  Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics , 2009 .

[14]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[15]  A. Polkovnikov,et al.  Classifying and measuring geometry of a quantum ground state manifold , 2013, 1305.0568.

[16]  N. Paunkovic,et al.  Ground state overlap and quantum phase transitions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Scaling of geometric phases close to the quantum phase transition in the XY spin chain. , 2005, Physical review letters.

[18]  A. Carollo,et al.  Haldane model at finite temperature , 2019, Journal of Statistical Mechanics: Theory and Experiment.

[19]  M. Markham,et al.  Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor , 2017, Science.

[20]  A. Carollo,et al.  Uhlmann number in translational invariant systems , 2018, Scientific Reports.

[21]  Geometric phases and criticality in spin-chain systems. , 2005, Physical review letters.

[22]  A. Carollo,et al.  Uhlmann curvature in dissipative phase transitions , 2017, Scientific Reports.

[23]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[24]  P. Zanardi,et al.  Quantum information-geometry of dissipative quantum phase transitions. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Tomavz Prosen,et al.  Quantum metrology with nonequilibrium steady states of quantum spin chains , 2014, 1412.1977.

[26]  H. P. Robertson The Uncertainty Principle , 1929 .

[27]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[28]  Paolo Zanardi,et al.  Information-theoretic differential geometry of quantum phase transitions. , 2007, Physical review letters.

[29]  Sammy Ragy,et al.  Compatibility in multiparameter quantum metrology , 2016, 1608.02634.

[30]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[31]  Bernardo Spagnolo,et al.  Symmetric Logarithmic Derivative of Fermionic Gaussian States , 2018, Entropy.

[32]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[33]  L. Pezzè,et al.  Quantum metrology with nonclassical states of atomic ensembles , 2016, Reviews of Modern Physics.

[34]  Gerardo Adesso,et al.  Optimal quantum estimation of the Unruh-Hawking effect. , 2010, Physical review letters.

[35]  Hidetoshi Katori,et al.  Optical lattice clocks and quantum metrology , 2011 .

[36]  Vittorio Giovannetti,et al.  Local quantum thermal susceptibility , 2015, Nature Communications.

[37]  Stefano Pirandola,et al.  Ultimate Precision Bound of Quantum and Subwavelength Imaging. , 2016, Physical review letters.

[38]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[39]  Bernardo Spagnolo,et al.  Enhancing Metastability by Dissipation and Driving in an Asymmetric Bistable Quantum System , 2018, Entropy.

[40]  Tomavz Prosen,et al.  Fisher information approach to nonequilibrium phase transitions in a quantum XXZ spin chain with boundary noise , 2017 .

[41]  C. Helstrom Quantum detection and estimation theory , 1969 .

[42]  Paolo Zanardi,et al.  Quantum criticality as a resource for quantum estimation , 2007, 0708.1089.

[43]  Gerardo Adesso,et al.  Multiparameter Gaussian quantum metrology , 2017, Physical Review A.

[44]  Paolo Zanardi,et al.  Bures metric over thermal state manifolds and quantum criticality , 2007, 0707.2772.

[45]  Stabilization by dissipation and stochastic resonant activation in quantum metastable systems , 2018, The European Physical Journal Special Topics.

[46]  P. Humphreys,et al.  Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases. , 2017, Physical review letters.

[47]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[48]  G. Tóth,et al.  Quantum metrology from a quantum information science perspective , 2014, 1405.4878.

[49]  Philipp Hyllus,et al.  Precision bounds for gradient magnetometry with atomic ensembles , 2017, 1703.09056.

[50]  David Edward Bruschi,et al.  Quantum metrology for relativistic quantum fields , 2013, 1312.5707.

[51]  M. Mitchell,et al.  Quantum-enhanced measurements without entanglement , 2017, Reviews of Modern Physics.

[52]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[53]  A. Carollo,et al.  Finite-temperature geometric properties of the Kitaev honeycomb model , 2018, Physical Review B.

[54]  R. Gill,et al.  On asymptotic quantum statistical inference , 2011, 1112.2078.

[55]  Peter Zoller,et al.  Measuring multipartite entanglement through dynamic susceptibilities , 2015, Nature Physics.

[56]  Gerardo Adesso,et al.  Individual Quantum Probes for Optimal Thermometry. , 2014, Physical review letters.

[57]  Bernardo Spagnolo,et al.  Nonlinear Relaxation Phenomena in Metastable Condensed Matter Systems , 2016, Entropy.

[58]  Bernardo Spagnolo,et al.  Multi-State Quantum Dissipative Dynamics in Sub-Ohmic Environment: The Strong Coupling Regime , 2015, Entropy.

[59]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[60]  Daniel A. Lidar,et al.  Intrinsic geometry of quantum adiabatic evolution and quantum phase transitions , 2010, 1004.0509.

[61]  Richard D. Gill,et al.  Quantum local asymptotic normality based on a new quantum likelihood ratio , 2012, 1210.3749.

[62]  C. Degen,et al.  Quantum sensing with arbitrary frequency resolution , 2017, Science.

[63]  X. R. Wang,et al.  Relating Fisher information to order parameters. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[65]  Masahito Hayashi,et al.  Asymptotic performance of optimal state estimation in qubit system , 2008 .

[66]  Paolo Zanardi,et al.  Quantum critical scaling of the geometric tensors. , 2007, Physical review letters.

[67]  A. Carollo,et al.  Stabilizing effect of driving and dissipation on quantum metastable states , 2018 .

[68]  P. Humphreys,et al.  Quantum enhanced multiple phase estimation. , 2013, Physical review letters.

[69]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .