Population coding: a historical sketch.

[1]  J.A. Anderson,et al.  Talking Nets: An Oral History Of Neural Networks , 1998, IEEE Trans. Neural Networks.

[2]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  Geoffrey E. Hinton,et al.  Distributed Representations , 1986, The Philosophy of Artificial Intelligence.

[4]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[5]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[6]  A. Papoulis Systems and transforms with applications in optics , 1981 .

[7]  D. Sparks,et al.  Size and distribution of movement fields in the monkey superior colliculus , 1976, Brain Research.

[8]  H. Wässle,et al.  Physiological identification of a morphological class of cat retinal ganglion cells. , 1975, The Journal of physiology.

[9]  J T McIlwain,et al.  Visual receptive fields and their images in superior colliculus of the cat. , 1975, Journal of neurophysiology.

[10]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[11]  B. Fischer Overlap of receptive field centers and representation of the visual field in the cat's optic tract. , 1973, Vision research.

[12]  Teuvo Kohonen,et al.  Correlation Matrix Memories , 1972, IEEE Transactions on Computers.

[13]  J.A. Anderson Two models for memory organization using interacting traces , 1970 .

[14]  R. Erickson,et al.  Stimulus coding in topographic and nontopographic afferent modalities: on the significance of the activity of individual sensory neurons. , 1968, Psychological review.

[15]  J. Mcilwain RECEPTIVE FIELDS OF OPTIC TRACT AXONS AND LATERAL GENICULATE CELLS: PERIPHERAL EXTENT AND BARBITURATE SENSITIVITY. , 1964, Journal of neurophysiology.

[16]  W. Pitts,et al.  What the Frog's Eye Tells the Frog's Brain , 1959, Proceedings of the IRE.

[17]  E. Bennett,et al.  The Decipherment of Linear B , 1959 .

[18]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[19]  C. Pfaffmann Gustatory afferent impulses , 1941 .

[20]  E. Adrian,et al.  Sensory discharges in single cutaneous nerve fibres , 1931, The Journal of physiology.

[21]  Maurice Pope,et al.  The Story of Decipherment: From Egyptian Hieroglyphs to Maya Script , 1999 .

[22]  S. Finger Origins of Neuroscience , 1994 .

[23]  Geoffrey E. Hinton,et al.  Parallel Models of Associative Memory , 1989 .

[24]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[25]  F. G. Worden,et al.  The neurosciences : third study program , 1974 .

[26]  E. Clarke The human brain and spinal cord , 1968 .

[27]  Thomas Young,et al.  On the theory of light and colours , 1967 .

[28]  S. W. Kuffler Neurons in the retina; organization, inhibition and excitation problems. , 1952, Cold Spring Harbor symposia on quantitative biology.

[29]  Thomas Young,et al.  II. The Bakerian Lecture. On the theory of light and colours , 1802, Philosophical Transactions of the Royal Society of London.