A partial differential equation model predictive control strategy: application to autoclave composite processing

A general framework for a partial differential equation (PDE) model predictive control (MPC) problem is formulated. A first principle model of the system, described by a semi-linear PDE system with boundary control, is employed in a model predictive control (MPC) framework. Here, the aim is to determine, off-line (i.e. without process measurement), the theoretical optimal behavior of the process that will be used during on-line MPC. Input and output constraints are handled in the optimization task using a nonlinear programming method. This strategy is evaluated for the optimization of processing temperatures during the manufacture of thick-sectioned polymer composite laminates. The off-line optimization task consists of determining the optimal temperature profile, otherwise known as the cure cycle. Moreover, for this particular process, the existence of a feasible constrained optimization problem is discussed through the design of a constraint bound.

[1]  Mark J. Balas,et al.  Stable Feedback Control of Linear Distributed Parameter Systems: Time and Frequency Domain Conditions☆ , 1998 .

[2]  John W. Gillespie,et al.  Process-Induced Stress and Deformation in Thick-Section Thermoset Composite Laminates , 1992 .

[3]  A. Beris,et al.  Thick-Sectioned RTM Composite Manufacturing, Part II. Robust Cure Cycle Optimization and Control , 2002 .

[4]  Ahmet Palazoglu,et al.  Control of nonlinear distributed parameter processes using symmetry groups and invariance conditions , 2002 .

[5]  John W. Gillespie,et al.  Two-Dimensional Cure Simulation of Thick Thermosetting Composites , 1991 .

[6]  George S. Springer,et al.  Autoclave Curing — Comparisons of Model and Test Results , 1992 .

[7]  Y. Toure,et al.  An extension of IMC to boundary-distributed parameter systems , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[8]  P. Christofides,et al.  Dynamic optimization of dissipative PDE systems using nonlinear order reduction , 2002 .

[9]  Gregory M. Martinez Fast cures for thick laminated organic matrix composites , 1991 .

[10]  Lokesh Kalra,et al.  Automation of Autoclave Cure of Graphite-Epoxy Composites , 1992 .

[11]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[12]  Prasad Dhurjati,et al.  Implementation of Model-Based Optimal Temperature Profiles for Autoclave Curing of Composites Using a Knowledge-Based System , 1994 .

[13]  Ahmet Karakas,et al.  Control of nonlinear distributed parameter systems using generalized invariants , 2000, Autom..

[14]  Françoise Couenne,et al.  Model predictive control of a catalytic reverse flow reactor , 2003, IEEE Trans. Control. Syst. Technol..

[15]  J. Rawlings,et al.  Feedback control of chemical processes using on-line optimization techniques , 1990 .

[16]  Antonios Armaou,et al.  Analysis and control of parabolic PDE systems with input constraints , 2003, Autom..

[17]  A. A. Patwardhan,et al.  Nonlinear model-predictive control of distributed-parameter systems , 1992 .

[18]  R. Fletcher Practical Methods of Optimization , 1988 .

[19]  G. Springer,et al.  Curing of Epoxy Matrix Composites , 1983 .

[20]  Hans H. Eder MBPC benefits and key success factors , 1999, 1999 European Control Conference (ECC).

[21]  Warren D. Seider,et al.  Model-predictive control of the Czochralski crystallization process. Part I. Conduction-dominated melt , 1997 .

[22]  J. L. Kardos,et al.  Batch chemical process quality control applied to curing of composite materials , 1997 .

[23]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[24]  Steven R. LeClair,et al.  Qualitative Process Automation , 1989 .

[25]  P. Daoutidis,et al.  Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds , 1997 .

[26]  Panagiotis D. Christofides,et al.  Optimization of transport-reaction processes using nonlinear model reduction , 2000 .

[27]  Panagiotis D. Christofides,et al.  Robust Control of Parabolic PDE Systems , 1998 .

[28]  Prasad Dhurjati,et al.  Heuristics guided optimization of a batch autoclave curing process , 1996 .

[29]  James B. Rawlings,et al.  Tutorial overview of model predictive control , 2000 .

[30]  Babu Joseph,et al.  Model Based Control of Voids and Product Thickness during Autoclave Curing of Carbon/Epoxy Composite Laminates , 1995 .

[31]  Jean Biston,et al.  Modeling of a distributed parameter process with a variable boundary: application to its control , 1994 .

[32]  Dai Gil Lee,et al.  Development of an Autoclave Cure Cycle with Cooling and Reheating Steps for Thick Thermoset Composite Laminates , 1997 .

[33]  Dai Gil Lee,et al.  Expert Cure System for the Carbon Fiber Epoxy Composite Materials , 1995 .

[34]  Karlene A. Hoo,et al.  Low-order model identification for implementable control solutions of distributed parameter systems , 2002 .

[35]  Karlene A. Hoo,et al.  Low-order Control-relevant Models for A Class of Distributed Parameter Systems , 2001 .

[36]  Pascal Dufour,et al.  On nonlinear distributed parameter model predictive control strategy: on-line calculation time reduction and application to an experimental drying process , 2003, Comput. Chem. Eng..