The environments of high redshift radio galaxies and quasars: probes of protoclusters

We use the GALFORM semi-analytical model to study high-density regions traced by radio galaxies and quasars at high redshifts. We explore the impact that baryonic physics has upon the properties of galaxies in these environments. Star-forming emission-line galaxies (Ly α and H α emitters) are used to probe the environments at high redshifts. Radio galaxies are predicted to be hosted by more massive haloes than quasars, and this is imprinted on the amplitude of galaxy overdensities and cross-correlation functions. We find that Ly α radiative transfer and active galactic nucleus feedback indirectly affect the clustering on small scales and also the stellar masses, star formation rates and gas metallicities of galaxies in dense environments. We also investigate the relation between protoclusters associated with radio galaxies and quasars, and their present-day cluster descendants. The progenitors of massive clusters associated with radio galaxies and quasars allow us to determine an average protocluster size in a simple way. Overdensities within the protoclusters are found to correlate with the halo descendant masses. We present scaling relations that can be applied to observational data. By computing projection effects due to the wavelength resolution of modern spectrographs and narrow-band filters, we show that the former have enough spectral resolution to map the structure of protoclusters, whereas the latter can be used to measure the clustering around radio galaxies and quasars over larger scales to determine the mass of dark matter haloes hosting them

[1]  Perth,et al.  A unified multiwavelength model of galaxy formation , 2015, 1509.08473.

[2]  D. Schneider,et al.  SURVEYING GALAXY PROTO-CLUSTERS IN EMISSION: A LARGE-SCALE STRUCTURE AT z = 2.44 AND THE OUTLOOK FOR HETDEX , 2015, 1505.03877.

[3]  R. Maiolino,et al.  Strangulation as the primary mechanism for shutting down star formation in galaxies , 2015, Nature.

[4]  J. Silverman,et al.  Discovery of an overdensity of Lyman alpha emitters around a $z ∼ 4$ QSO with the Large Binocular Telescope , 2014, 1407.2609.

[5]  Tokyo,et al.  The environments of Ly α blobs – I. Wide-field Ly α imaging of TN J1338−1942, a powerful radio galaxy at z ≃ 4.1 associated with a giant Ly α nebula , 2014, 1403.5924.

[6]  M. Jarvis,et al.  Why z > 1 radio-loud galaxies are commonly located in protoclusters , 2014, 1409.1218.

[7]  M. Dijkstra Lyα Emitting Galaxies as a Probe of Reionisation , 2014, Publications of the Astronomical Society of Australia.

[8]  Carlton M. Baugh,et al.  How sensitive are predicted galaxy luminosities to the choice of stellar population synthesis model , 2013, 1309.7057.

[9]  André A. Costa,et al.  J-PAS: The Javalambre-Physics of the Accelerated Universe Astrophysical Survey , 2014, 1403.5237.

[10]  E. Cooke,et al.  A z = 2.5 protocluster associated with the radio galaxy MRC 2104−242: star formation and differing mass functions in dense environments , 2014, 1403.4259.

[11]  L. Cowie,et al.  z ∼ 1 Lyα EMITTERS. I. THE LUMINOSITY FUNCTION,,, , 2014, The Astrophysical journal.

[12]  M. Jarvis,et al.  Mergers as triggers for nuclear activity: a near-IR study of the close environment of AGN in the VISTA-VIDEO survey , 2013, 1312.1699.

[13]  K. Gebhardt,et al.  ANCIENT LIGHT FROM YOUNG COSMIC CITIES: PHYSICAL AND OBSERVATIONAL SIGNATURES OF GALAXY PROTO-CLUSTERS , 2013, 1310.2938.

[14]  J. Falcón-Barroso,et al.  Secular Evolution of Galaxies , 2013 .

[15]  R. Morganti,et al.  The environments of luminous radio galaxies and type-2 quasars , 2013, 1308.4725.

[16]  David Schlegel,et al.  The DESI Experiment, a whitepaper for Snowmass 2013 , 2013, 1308.0847.

[17]  E. Bañados,et al.  The Galaxy Environment Of A QSO At Z Similar To 5.7 , 2013 .

[18]  E. Bañados,et al.  THE GALAXY ENVIRONMENT OF A QSO AT z ∼ 5.7 , 2013, Proceedings of the International Astronomical Union.

[19]  Genevieve M. Shattow,et al.  Measures of galaxy environment – III. Difficulties in identifying protoclusters at z ∼ 2 , 2013, 1306.1836.

[20]  C. Baugh,et al.  The most luminous quasars do not live in the most massive dark matter haloes at any redshift , 2013, 1305.2199.

[21]  M. Bremer,et al.  Are z 5 quasars found in the most massive high-redshift overdensities? , 2013, 1304.3726.

[22]  A. M. Swinbank,et al.  On the evolution and environmental dependence of the star formation rate versus stellar mass relation since z ∼ 2 , 2013, 1302.5315.

[23]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: measuring the cosmic growth rate with the two-point galaxy correlation function , 2013, 1302.5178.

[24]  D. Calzetti Star Formation Rate Indicators , 2012, 1208.2997.

[25]  Toru Yamada,et al.  ASSEMBLY OF MASSIVE GALAXIES IN A HIGH-z PROTOCLUSTER , 2012, 1203.0814.

[26]  C. Lacey,et al.  Can galactic outflows explain the properties of Ly α emitters , 2011, 1110.5701.

[27]  C. Conselice,et al.  Measures of Galaxy Environment I - What is "Environment"? , 2011, 1109.6328.

[28]  C. Steidel,et al.  FILAMENTARY LARGE-SCALE STRUCTURE TRACED BY SIX Lyα BLOBS AT z = 2.3 , 2011, 1109.2167.

[29]  H. Rottgering,et al.  Discovery of a high-z protocluster with tunable filters: the case of 6C0140+326 at z=4.4 , 2011, 1106.5495.

[30]  Durham,et al.  Cosmic evolution of the atomic and molecular gas contents of galaxies , 2011, 1105.2294.

[31]  C. Baugh,et al.  The evolution of Lyman-break galaxies in the cold dark matter model , 2011 .

[32]  C. Baugh,et al.  The evolution of AGN across cosmic time: what is downsizing? , 2010, 1011.5222.

[33]  Tokyo,et al.  The Subaru Ly-alpha blob survey: A sample of 100 kpc Ly-alpha blobs at z=3 , 2010, 1010.2877.

[34]  P. Capak,et al.  AN ATLAS OF z = 5.7 AND z = 6.5 Lyα EMITTERS, , 2010, 1009.1144.

[35]  S. Miyazaki,et al.  A LARGE NUMBER OF z > 6 GALAXIES AROUND A QSO AT z = 6.43: EVIDENCE FOR A PROTOCLUSTER? , 2010, 1008.0857.

[36]  C. Lagos,et al.  Ram pressure stripping in a galaxy formation model – I. A novel numerical approach , 2010, 1006.5446.

[37]  G. Richards,et al.  The environments of z ∼ 1 active galactic nuclei at 3.6 μm , 2010, 1001.5419.

[38]  C. Steidel,et al.  THE RELATIONSHIP BETWEEN STELLAR POPULATIONS AND Lyα EMISSION IN LYMAN BREAK GALAXIES , 2009, 0911.2000.

[39]  L. Cowie,et al.  LOW-REDSHIFT Lyα SELECTED GALAXIES FROM GALEX SPECTROSCOPY: A COMPARISON WITH BOTH UV-CONTINUUM SELECTED GALAXIES AND HIGH-REDSHIFT Lyα EMITTERS,, , 2009, 0909.0031.

[40]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[41]  C. Baugh,et al.  Grand unification of AGN activity in the ΛCDM cosmology , 2009, 0911.1128.

[42]  A. Cimatti,et al.  Probing dark energy with future redshift surveys: a comparison of emission line and broad‐band selection in the near‐infrared , 2009, 0911.0669.

[43]  G. Kauffmann,et al.  Clustering of Radio Galaxies and Quasars , 2009, 0910.3667.

[44]  R. Bouwens,et al.  ΛCDM predictions for galaxy protoclusters – I. The relation between galaxies, protoclusters and quasars at z∼ 6 , 2008, 0810.2566.

[45]  Durham,et al.  The clustering of Lyα emitters in a ΛCDM Universe , 2008, 0807.3447.

[46]  D. O. Astronomy,et al.  The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX): Description and Early Pilot Survey Results , 2008, 0806.0183.

[47]  R. J. Ivison,et al.  HiZELS: a high-redshift survey of Hα emitters – I. The cosmic star formation rate and clustering at z= 2.23 , 2008, 0805.2861.

[48]  C. Lagos,et al.  Effects of AGN feedback on ΛCDM galaxies , 2008, 0805.1930.

[49]  A. Szalay,et al.  Lyα-Emitting Galaxies at 0.2 < z < 0.35 from GALEX Spectroscopy , 2008, 0803.1924.

[50]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[51]  C. Breuck,et al.  Distant radio galaxies and their environments , 2008, 0802.2770.

[52]  A. R. King,et al.  The evolution of black hole mass and spin in active galactic nuclei , 2008, 0801.1564.

[53]  H. Mo,et al.  The importance of satellite quenching for the build-up of the red sequence of present-day galaxies , 2007, 0710.3164.

[54]  G. Kauffmann,et al.  Radio jets in galaxies with actively accreting black holes : new insights from the SDSS , 2007, 0709.2911.

[55]  D. Kawata,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 11/26/04 STRANGULATION IN GALAXY GROUPS , 2022 .

[56]  M. Doi,et al.  The Habitat Segregation between Lyman Break Galaxies and Lyα Emitters around a QSO at z ~ 5 , 2007, 0704.2238.

[57]  Hideki Takami,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2008 .

[58]  Cambridge,et al.  Protoclusters associated with z > 2 radio galaxies - I. Characteristics of high redshift protoclusters , 2006, astro-ph/0610567.

[59]  Carlos S. Frenk,et al.  The large-scale structure of the Universe , 2006, Nature.

[60]  S. Okamura,et al.  The End of the Reionization Epoch Probed by Lyα Emitters at z = 6.5 in the Subaru Deep Field , 2006, astro-ph/0604149.

[61]  Z. Haiman,et al.  Lyα Radiation from Collapsing Protogalaxies. I. Characteristics of the Emergent Spectrum , 2005, astro-ph/0510407.

[62]  R. Bouwens,et al.  Clustering of Star-forming Galaxies Near a Radio Galaxy at z = 5.2 , 2005, astro-ph/0509308.

[63]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[64]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[65]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[66]  C. Steidel,et al.  Spectroscopic Identification of a Protocluster at z = 2.300: Environmental Dependence of Galaxy Properties at High Redshift , 2005, astro-ph/0502432.

[67]  Alessandro Bressan,et al.  Can the faint submillimetre galaxies be explained in the Λ cold dark matter model , 2005 .

[68]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[69]  C. Baugh,et al.  The abundance of Lyα emitters in hierarchical models , 2004, astro-ph/0405304.

[70]  H. Rottgering,et al.  Properties of Lyα emitters around the radio galaxy MRC 0316 257 , 2005, astro-ph/0501259.

[71]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[72]  H. Mo,et al.  The dependence of the galaxy luminosity function on large-scale environment , 2003, astro-ph/0310147.

[73]  Chisato Yamauchi,et al.  The morphology–density relation in the Sloan Digital Sky Survey , 2003, astro-ph/0312043.

[74]  E. Terlevich,et al.  Lyα Emission in Starbursts: Implications for Galaxies at High Redshift , 2003, astro-ph/0309396.

[75]  Durham,et al.  What Shapes the Luminosity Function of Galaxies? , 2003, astro-ph/0302450.

[76]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[77]  D. Meier Grand unification of AGN and the accretion and spin paradigms , 1999, astro-ph/9908283.

[78]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: luminosity dependence of galaxy clustering , 2001, astro-ph/0105500.

[79]  C. Baugh,et al.  Hierarchical galaxy formation , 2000, astro-ph/0007281.

[80]  Atsunori Yonehara,et al.  Publications of the Astronomical Society of Australia , 2000 .

[81]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[82]  D. Tucker,et al.  The Influence of Environment on the Star Formation Rates of Galaxies , 1997, astro-ph/9712319.

[83]  T. Thuan,et al.  Nearby Young Dwarf Galaxies: Primordial Gas and Lyα Emission , 1997 .

[84]  R. Carlberg,et al.  Star Formation in Cluster Galaxies at 0.2 < z < 0.55 , 1997, astro-ph/9707339.

[85]  D. Calzetti,et al.  Obscuration of LY alpha Photons in Star-forming Galaxies , 1996 .

[86]  G. Lake,et al.  Galaxy harassment and the evolution of clusters of galaxies , 1995, Nature.

[87]  R. Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.

[88]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[89]  D. Neufeld The transfer of resonance-line radiation in static astrophysical media , 1990 .

[90]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[91]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[92]  R. Kennicutt The Rate of star formation in normal disk galaxies , 1983 .

[93]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[94]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[95]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[96]  Jr. Oemler Augustus The Systematic Properties of Clusters of Galaxies. Photometry of 15 Clusters , 1974 .

[97]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[98]  J. P. Harrington The Scattering of Resonance-line Radiation in the Limit of Large Optical Depth , 1973 .