Angiotensinase activity is asymmetrically distributed in the amygdala, hippocampus and prefrontal cortex of the rat

[1]  Francisco Vives,et al.  Neuropeptides, neuropeptidases and brain asymmetry. , 2004, Current protein & peptide science.

[2]  Ryosuke Kawakami,et al.  Asymmetrical Allocation of NMDA Receptor ε2 Subunits in Hippocampal Circuitry , 2003, Science.

[3]  B. Roques,et al.  Conversion of brain angiotensin II to angiotensin III is critical for pressor response in rats. , 2003, American journal of physiology. Regulatory, integrative and comparative physiology.

[4]  Joohyung Lee,et al.  AT4 receptor is insulin-regulated membrane aminopeptidase: potential mechanisms of memory enhancement , 2003, Trends in Endocrinology & Metabolism.

[5]  L. D. van de Kar,et al.  Neuroendocrine pharmacology of stress. , 2003, European journal of pharmacology.

[6]  Daniel Tranel,et al.  Asymmetric Functional Roles of Right and Left Ventromedial Prefrontal Cortices in Social Conduct, Decision-Making, and Emotional Processing , 2002, Cortex.

[7]  M. Gasparo,et al.  Effects of dehydration on renal aminopeptidase activities in adult male and female rats , 2002, Regulatory Peptides.

[8]  R. Sullivan,et al.  Behavioral effects of excitotoxic lesions of ventral medial prefrontal cortex in the rat are hemisphere-dependent , 2002, Brain Research.

[9]  R. Simpson,et al.  Evidence That the Angiotensin IV (AT4) Receptor Is the Enzyme Insulin-regulated Aminopeptidase* , 2001, The Journal of Biological Chemistry.

[10]  D. Jezova,et al.  Changes in angiotensin AT1 receptor mRNA levels in the rat brain after immobilization stress and inhibition of central nitric oxide synthase. , 2001, Endocrine regulations.

[11]  C. Thiel,et al.  Dopaminergic Lateralisation in the Forebrain: Relations to Behavioural Asymmetries and Anxiety in Male Wistar Rats , 2001, Neuropsychobiology.

[12]  M. Sim,et al.  Effects of des-aspartate-angiotensin I on angiotensin II-induced incorporation of phenylalanine and thymidine in cultured rat cardiomyocytes and aortic smooth muscle cells , 2000, Regulatory Peptides.

[13]  O. von Bohlen und Halbach,et al.  Identification of Angiotensin IV Binding Sites in the Mouse Brain by a Fluorescent Binding Study , 2000, Neuroendocrinology.

[14]  B. Alescio-Lautier,et al.  Neuromodulation of memory in the hippocampus by vasopressin. , 2000, European journal of pharmacology.

[15]  R. Ragot,et al.  Role of frontal cortex in memory for duration: an event-related potential study in humans , 2000, Neuroscience Letters.

[16]  T. E. Rasmussen,et al.  Structure of the human oxytocinase/insulin-regulated aminopeptidase gene and localization to chromosome 5q21. , 2000, European journal of biochemistry.

[17]  A. Friederici,et al.  Functional asymmetry of human prefrontal cortex: encoding and retrieval of verbally and nonverbally coded information. , 2000, Learning & memory.

[18]  V. Georgiev,et al.  Lateralized learning and memory effects of angiotensin II microinjected into the rat CA1 hippocampal area☆ , 2000, Peptides.

[19]  R. Sullivan,et al.  Lateralized Effects of Medial Prefrontal Cortex Lesions on Neuroendocrine and Autonomic Stress Responses in Rats , 1999, The Journal of Neuroscience.

[20]  Young,et al.  Localization of Vasopressin (V1a) Receptor Binding and mRNA in the Rhesus Monkey Brain , 1999, Journal of neuroendocrinology.

[21]  M. Fournié-Zaluski,et al.  Aminophosphinic inhibitors as transition state analogues of enkephalin-degrading enzymes: a class of central analgesics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. Wright,et al.  Autoradiographic Identification of Kidney Angiotensin IV Binding Sites and Angiotensin IV-Induced Renal Cortical Blood Flow Changes in Rats , 1998, Peptides.

[23]  M. Palkovits,et al.  Expression of Angiotensin Type-1 (AT1) and Type-2 (AT2) Receptor mRNAs in the Adult Rat Brain: A Functional Neuroanatomical Review , 1997, Frontiers in Neuroendocrinology.

[24]  J. Harding,et al.  Important roles for angiotensin III and IV in the brain renin-angiotensin system , 1997, Brain Research Reviews.

[25]  W. Schelman,et al.  Angiotensin II type-2 (AT2) receptor-mediated inhibition of NMDA receptor signalling in neuronal cells. , 1997, Brain research. Molecular brain research.

[26]  P. Simonov [The brain mechanisms of emotions]. , 1997, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova.

[27]  B. Roques,et al.  The in vivo metabolism of cholecystokinin (CCK-8) is essentially ensured by aminopeptidase A , 1996, Peptides.

[28]  I. Prieto,et al.  Pyroglutamyl peptidase I levels and their left-right distribution in the rat retina and hypothalamus are influenced by light-dark conditions , 1996, Brain Research.

[29]  G. Aguilera,et al.  The Renin Anggiotensin System and the Stress Response , 1995 .

[30]  J. W. Harding,et al.  Brain angiotensin receptor subtypes AT1, AT2, and AT4 and their functions , 1995, Regulatory Peptides.

[31]  A. Nagamatsu,et al.  An aminopeptidase activity from porcine kidney that hydrolyzes oxytocin and vasopressin: purification and partial characterization. , 1995, Biochimica et biophysica acta.

[32]  M. Sim,et al.  Degradation of angiotensin I to [des-Asp1]angiotensin I by a novel aminopeptidase in the rat hypothalamus. , 1994, Biochemical pharmacology.

[33]  V. Petkov,et al.  Asymmetry in behavioral responses to cholecystokinin microinjected into rat nucleus accumbens and amygdala , 1994, Neuropharmacology.

[34]  R. Davidson Anterior cerebral asymmetry and the nature of emotion , 1992, Brain and Cognition.

[35]  D. Venzon,et al.  Daily rhythm of aspartate aminopeptidase activity in the retina, pineal gland and occipital cortex of the rat. , 1992, Neuroendocrinology.

[36]  P. Lardelli,et al.  Mn2+-activated aspartat aminopeptidase activity, subcellular localization in young and adult rat brain , 1990, Brain Research.

[37]  J. Carlson,et al.  Cerebral lateralization as a source of interindividual differences in behavior , 1989, Experientia.

[38]  C. Iribar,et al.  Asymmetrical distribution of aminopeptidase activity in the cortex of rat brain , 1986, Brain Research.

[39]  T. Aoyagi,et al.  Purification by affinity chromatography using amastatin and properties of aminopeptidase A from pig kidney. , 1980, Biochimica et biophysica acta.

[40]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[41]  H. Cheung,et al.  A soluble aspartate aminopeptidase from dog kidney. , 1971, Biochimica et biophysica acta.

[42]  L. Greenberg,et al.  Fluorometric measurement of alkaline phosphatase and aminopeptidase activities in the order of 10-14 mole. , 1962, Biochemical and biophysical research communications.

[43]  Bremner Jd Functional neuroanatomical correlates of traumatic stress revisited 7 years later, this time with data. , 2003, Psychopharmacology bulletin.

[44]  K. Wišniewski,et al.  The role of NMDA receptors in central action of angiotensin II. , 1996, Acta physiologica Hungarica.

[45]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .