Influence Maximization With Visual Analytics

In social networks, individuals’ decisions are strongly influenced by recommendations from their friends, acquaintances, and favorite renowned personalities. The popularity of online social networking platforms makes them the prime venues to advertise products and promote opinions. The <italic>Influence Maximization</italic> (IM) problem entails selecting a <italic>seed set</italic> of users that maximizes the influence spread, i.e., the expected number of users positively influenced by a stochastic diffusion process triggered by the seeds. Engineering and analyzing IM algorithms remains a difficult and demanding task due to the NP-hardness of the problem and the stochastic nature of the diffusion processes. Despite several heuristics being introduced, they often fail in providing enough information on how the network topology affects the diffusion process, precious insights that could help researchers improve their seed set selection. In this paper, we present VAIM, a visual analytics system that supports users in analyzing, evaluating, and comparing information diffusion processes determined by different IM algorithms. Furthermore, VAIM provides useful insights that the analyst can use to modify the seed set of an IM algorithm, so to improve its influence spread. We assess our system by: <inline-formula><tex-math notation="LaTeX">$(i)$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>(</mml:mo><mml:mi>i</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="arleo-ieq1-3190623.gif"/></alternatives></inline-formula> a qualitative evaluation based on a guided experiment with two domain experts on two different data sets; <inline-formula><tex-math notation="LaTeX">$(ii)$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>(</mml:mo><mml:mi>i</mml:mi><mml:mi>i</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="arleo-ieq2-3190623.gif"/></alternatives></inline-formula> a quantitative estimation of the value of the proposed visualization through the ICE-T methodology by Wall <italic>et al.</italic> (IEEE TVCG - 2018). The twofold assessment indicates that VAIM effectively supports our target users in the visual analysis of the performance of IM algorithms.

[1]  Guy Melançon,et al.  On visualization techniques comparison for large social networks overview: A user experiment , 2020, Vis. Informatics.

[2]  David S. Ebert,et al.  A Visual Analytics Based Decision Making Environment for COVID-19 Modeling and Visualization , 2020, 2020 IEEE Visualization Conference (VIS).

[3]  Walter Didimo,et al.  VAIM: Visual Analytics for Influence Maximization , 2020, GD.

[4]  Walter Didimo,et al.  Hybrid Graph Visualizations With ChordLink: Algorithms, Experiments, and Applications , 2020, IEEE Transactions on Visualization and Computer Graphics.

[5]  Hongda Jiang,et al.  Visual Data Analysis and Simulation Prediction for COVID-19 , 2020, International Journal of Educational Excellence.

[6]  Alex Endert,et al.  A Heuristic Approach to Value-Driven Evaluation of Visualizations , 2019, IEEE Transactions on Visualization and Computer Graphics.

[7]  Yuchen Li,et al.  Influence Maximization on Social Graphs: A Survey , 2018, IEEE Transactions on Knowledge and Data Engineering.

[8]  Stephan Diehl,et al.  Exploring the Limits of Complexity: A Survey of Empirical Studies on Graph Visualisation , 2018, Vis. Informatics.

[9]  Xiaodi Huang,et al.  NGD: Filtering Graphs for Visual Analysis , 2018, IEEE Transactions on Big Data.

[10]  Christos Faloutsos,et al.  REV2: Fraudulent User Prediction in Rating Platforms , 2018, WSDM.

[11]  Dino Pedreschi,et al.  NDlib: a python library to model and analyze diffusion processes over complex networks , 2017, International Journal of Data Science and Analytics.

[12]  Yingcai Wu,et al.  SocialWave: Visual Analysis of Spatio-temporal Diffusion of Information on Social Media , 2017, ACM Trans. Intell. Syst. Technol..

[13]  Xiaoru Yuan,et al.  Social Media Visual Analytics , 2017, Comput. Graph. Forum.

[14]  Sainyam Galhotra,et al.  Debunking the Myths of Influence Maximization: An In-Depth Benchmarking Study , 2017, SIGMOD Conference.

[15]  Walter Didimo,et al.  Large graph visualizations using a distributed computing platform , 2017, Inf. Sci..

[16]  Christos Faloutsos,et al.  Edge Weight Prediction in Weighted Signed Networks , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[17]  Michalis Vazirgiannis,et al.  SpreadViz: Analytics and Visualization of Spreading Processes in Social Networks , 2016, 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW).

[18]  Xiaoru Yuan,et al.  D-Map: Visual analysis of ego-centric information diffusion patterns in social media , 2016, 2016 IEEE Conference on Visual Analytics Science and Technology (VAST).

[19]  Walter Didimo,et al.  A Distributed Multilevel Force-Directed Algorithm , 2016, IEEE Transactions on Parallel and Distributed Systems.

[20]  Kwan-Liu Ma,et al.  Integrating predictive analytics into a spatiotemporal epidemic simulation , 2015, 2015 IEEE Conference on Visual Analytics Science and Technology (VAST).

[21]  Mira Dontcheva,et al.  MatrixWave: Visual Comparison of Event Sequence Data , 2015, CHI.

[22]  Hélène Kirchner,et al.  A Visual Analytics Approach to Compare Propagation Models in Social Networks , 2015, GaM.

[23]  Cheng Long,et al.  Visual-VM: A Social Network Visualization Tool for Viral Marketing , 2014, 2014 IEEE International Conference on Data Mining Workshop.

[24]  John T. Stasko,et al.  Value-driven evaluation of visualizations , 2014, BELIV.

[25]  Yale Song,et al.  #FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media , 2014, IEEE Transactions on Visualization and Computer Graphics.

[26]  Fangzhao Wu,et al.  OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media , 2014, IEEE Transactions on Visualization and Computer Graphics.

[27]  Reynold Xin,et al.  GraphX: Graph Processing in a Distributed Dataflow Framework , 2014, OSDI.

[28]  Silvia Miksch,et al.  A matter of time: Applying a data-users-tasks design triangle to visual analytics of time-oriented data , 2014, Comput. Graph..

[29]  Ronaldo Menezes,et al.  Understanding the spread of malicious mobile-phone programs and their damage potential , 2013, International Journal of Information Security.

[30]  Cécile Favre,et al.  Information diffusion in online social networks: a survey , 2013, SGMD.

[31]  Tobias Isenberg,et al.  Weighted graph comparison techniques for brain connectivity analysis , 2013, CHI.

[32]  Xiaohua Sun,et al.  Whisper: Tracing the Spatiotemporal Process of Information Diffusion in Real Time , 2012, IEEE Transactions on Visualization and Computer Graphics.

[33]  David S. Ebert,et al.  Visual analytics decision support environment for epidemic modeling and response evaluation , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[34]  Michael S. Bernstein,et al.  Processing and visualizing the data in tweets , 2011, SGMD.

[35]  Jonathan C. Roberts,et al.  Visual comparison for information visualization , 2011, Inf. Vis..

[36]  Michael S. Bernstein,et al.  Twitinfo: aggregating and visualizing microblogs for event exploration , 2011, CHI.

[37]  Ryan Hafen,et al.  Forecasting Hotspots—A Predictive Analytics Approach , 2011, IEEE Transactions on Visualization and Computer Graphics.

[38]  Alessandro Vespignani,et al.  The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale , 2011, BMC infectious diseases.

[39]  Wei Chen,et al.  Scalable influence maximization for prevalent viral marketing in large-scale social networks , 2010, KDD.

[40]  Walter Didimo,et al.  Visual Analysis of Large Graphs Using (X,Y)-Clustering and Hybrid Visualizations , 2010, IEEE Transactions on Visualization and Computer Graphics.

[41]  Azadeh Iranmehr,et al.  Trust Management for Semantic Web , 2009, 2009 Second International Conference on Computer and Electrical Engineering.

[42]  Wei Chen,et al.  Efficient influence maximization in social networks , 2009, KDD.

[43]  Jean-Daniel Fekete,et al.  Improving the Readability of Clustered Social Networks using Node Duplication , 2008, IEEE Transactions on Visualization and Computer Graphics.

[44]  Masahiro Kimura,et al.  Effective Visualization of Information Diffusion Process over Complex Networks , 2008, ECML/PKDD.

[45]  Michael Garland,et al.  On the Visualization of Social and other Scale-Free Networks , 2008, IEEE Transactions on Visualization and Computer Graphics.

[46]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[47]  Diansheng Guo,et al.  Visual analytics of spatial interaction patterns for pandemic decision support , 2007, Int. J. Geogr. Inf. Sci..

[48]  Aravind Srinivasan,et al.  Modelling disease outbreaks in realistic urban social networks , 2004, Nature.

[49]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[50]  Cynthia A. Brewer,et al.  ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps , 2003 .

[51]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[52]  Emden R. Gansner,et al.  An open graph visualization system and its applications to software engineering , 2000, Softw. Pract. Exp..

[53]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[54]  Stephen G. Kobourov,et al.  Force-Directed Drawing Algorithms , 2013, Handbook of Graph Drawing and Visualization.

[55]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[56]  Yifan Hu,et al.  Efficient, High-Quality Force-Directed Graph Drawing , 2006 .

[57]  Peter Szor,et al.  Fighting Computer Virus Attacks , 2004, USENIX Security Symposium.