Insight into the effects of the oxygen species over Ni/ZrO2 catalyst surface on methane reforming with carbon dioxide

[1]  Jingguang G. Chen,et al.  Dry reforming of methane over CeO2-supported Pt-Co catalysts with enhanced activity , 2018, Applied Catalysis B: Environmental.

[2]  E. Wolf,et al.  Pressure dilution, a new method to prepare a stable Ni/fumed silica catalyst for the dry reforming of methane , 2018, Applied Catalysis B: Environmental.

[3]  C. Detavernier,et al.  Catalyst-assisted chemical looping auto-thermal dry reforming: Spatial structuring effects on process efficiency , 2018, Applied Catalysis B: Environmental.

[4]  J. Fierro,et al.  Structure and surface properties of ceria-modified Ni-based catalysts for hydrogen production , 2018, Applied Catalysis B: Environmental.

[5]  H. Pfeiffer,et al.  Nickel-doped sodium zirconate catalysts for carbon dioxide storage and hydrogen production through dry methane reforming process , 2018 .

[6]  S. Chilukuri,et al.  Active and durable alkaline earth metal substituted perovskite catalysts for dry reforming of methane , 2018 .

[7]  H. Arellano‐Garcia,et al.  Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts , 2018 .

[8]  Jianglong Pu,et al.  Core-Shell Nickel Catalysts for the Steam Reforming of Acetic Acid , 2018 .

[9]  S. Kureti,et al.  Methanation of CO2 on iron based catalysts , 2018 .

[10]  R. Rabelo-Neto,et al.  CO2 reforming of methane over supported LaNiO3 perovskite-type oxides , 2018 .

[11]  C. Italiano,et al.  Ce0.70La0.20Ni0.10O2-δ catalyst for methane dry reforming: Influence of reduction temperature on the catalytic activity and stability , 2017 .

[12]  J. Lercher,et al.  Design of stable Ni/ZrO2 catalysts for dry reforming of methane , 2017 .

[13]  L. Jalowiecki-Duhamel,et al.  Ni/CeO2 based catalysts as oxygen vectors for the chemical looping dry reforming of methane for syngas production , 2017 .

[14]  D. Moon,et al.  CO2 Reforming of Methane over Ni0/La2O3 Catalyst Without Reduction Step: Effect of Calcination Atmosphere , 2017, Topics in Catalysis.

[15]  Hyunjoon Lee,et al.  Uncoupling the size and support effects of Ni catalysts for dry reforming of methane , 2017 .

[16]  Liang Zeng,et al.  Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles , 2017 .

[17]  Xinhua Liang,et al.  Highly active and stable alumina supported nickel nanoparticle catalysts for dry reforming of methane , 2017 .

[18]  Z. Iqbal,et al.  Energy efficient methane tri-reforming for synthesis gas production over highly coke resistant nanocrystalline Ni–ZrO2 catalyst , 2016 .

[19]  G. Pantaleo,et al.  Ni/CeO2 catalysts for methane partial oxidation: Synthesis driven structural and catalytic effects , 2016 .

[20]  G. Xu,et al.  Tuning the metal-support interaction in catalysts for highly efficient methane dry reforming reaction , 2016 .

[21]  Fanxing Li,et al.  Coke-resistant Ni@SiO2 catalyst for dry reforming of methane , 2015 .

[22]  N. Tsubaki,et al.  Carbon dioxide reforming of methane over Ni nanoparticles incorporated into mesoporous amorphous ZrO2 matrix , 2015 .

[23]  N. Tsubaki,et al.  Influence of Zirconia Phase on the Performance of Ni/ZrO2for Carbon Dioxide Reforming of Methane , 2015 .

[24]  James Spivey,et al.  A review of dry (CO2) reforming of methane over noble metal catalysts. , 2014, Chemical Society reviews.

[25]  Daniel J. Haynes,et al.  Kinetic and mechanistic study of dry (CO2) reforming of methane over Rh-substituted La2Zr2O7 pyrochlores , 2014 .

[26]  S. Kawi,et al.  Yolk–Satellite–Shell Structured Ni–Yolk@Ni@SiO2 Nanocomposite: Superb Catalyst toward Methane CO2 Reforming Reaction , 2014 .

[27]  M. Kogler,et al.  In Situ FT-IR Spectroscopic Study of CO2 and CO Adsorption on Y2O3, ZrO2, and Yttria-Stabilized ZrO2 , 2013, The journal of physical chemistry. C, Nanomaterials and interfaces.

[28]  W. Qian,et al.  Facile Route for Synthesizing Ordered Mesoporous Ni–Ce–Al Oxide Materials and Their Catalytic Performance for Methane Dry Reforming to Hydrogen and Syngas , 2013 .

[29]  V. Korchak,et al.  Carbonization of nickel catalysts and its effect on methane dry reforming , 2013 .

[30]  Lu Yao,et al.  Synthesis gas production from CO2 reforming of methane over Ni–Ce/SiO2 catalyst: The effect of calcination ambience , 2013 .

[31]  Uwe Rodemerck,et al.  Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles , 2013 .

[32]  W. Chu,et al.  Carbon dioxide reforming of methane for syngas production over La-promoted NiMgAl catalysts derived from hydrotalcites , 2012 .

[33]  Chongqi Chen,et al.  Highly efficient Au/ZrO2 catalysts for low-temperature water–gas shift reaction: Effect of pre-calcination temperature of ZrO2 , 2012 .

[34]  J. Zhao,et al.  Fine-tunable Ni@porous silica core–shell nanocatalysts: Synthesis, characterization, and catalytic properties in partial oxidation of methane to syngas , 2012 .

[35]  J. P. Holgado,et al.  Modifying the Size of Nickel Metallic Particles by H2/CO Treatment in Ni/ZrO2 Methane Dry Reforming Catalysts , 2011 .

[36]  Qingfeng Ge,et al.  Promotion effects of Ga2O3 on CO2 adsorption and conversion over a SiO2-supported Ni catalyst , 2010 .

[37]  Dapeng Liu,et al.  MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: Effect of strong metal-support interaction , 2009 .

[38]  P. Praserthdam,et al.  Influence of calcination treatment on the activity of tungstated zirconia catalysts towards esterification , 2009 .

[39]  Anders Holmen,et al.  A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts , 2008 .

[40]  Xiaoming Zheng,et al.  Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts , 2006 .

[41]  S. Collins,et al.  Infrared spectroscopic study of the carbon dioxide adsorption on the surface of Ga2O3 polymorphs. , 2006, The journal of physical chemistry. B.

[42]  Agus Haryanto,et al.  Current status of hydrogen production techniques by steam reforming of ethanol : A review , 2005 .

[43]  Chunshan Song,et al.  Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios , 2004 .

[44]  A. Bell,et al.  The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia , 2000 .

[45]  M. Muhammed,et al.  Surfaces of doped nanophase cerium oxide catalysts , 1999 .

[46]  A. Guerrero-Ruíz,et al.  Interaction of Carbon Dioxide with the Surface of Zirconia Polymorphs , 1998 .

[47]  M. Bradford,et al.  CO2Reforming of CH4over Supported Pt Catalysts , 1998 .

[48]  J. Lercher,et al.  Mono and bifunctional pathways of CO2/CH4 reforming over Pt and Rh based catalysts , 1998 .

[49]  Jens R. Rostrup-Nielsen,et al.  CO2-Reforming of Methane over Transition Metals , 1993 .

[50]  B. Davis,et al.  Crystallization and Phase Transformation Process in Zirconia: An in situ High‐Temperature X‐ray Diffraction Study , 1992 .

[51]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[52]  Malcolm L. H. Green,et al.  Partial oxidation of methane to synthesis gas using carbon dioxide , 1991, Nature.

[53]  K. Tanabe Surface and catalytic properties of ZrO2 , 1985 .