Mixed isoparametric elements for saint-venant torsion

[1]  Joel Moses,et al.  MACSYMA - the fifth year , 1974, SIGS.

[2]  P. Marcal,et al.  Introduction to the Finite-Element Method , 1973 .

[3]  Torgeir Moan,et al.  Finite element stress field solution of the problem of saint venant torsion , 1973 .

[4]  S. Nakagiri,et al.  Elastic‐plastic analysis of Saint‐Venant torsion problem by a hybrid stress model , 1972 .

[5]  W. A. Martin,et al.  The MACSYMA system , 1971, SYMSAC '71.

[6]  J. L. Krahula,et al.  A finite element solution for Saint-Venant torsion , 1969 .

[7]  川井 忠彦,et al.  Finite Element Analysis on the Torsion of a Bar with Uniform Cross Section , 1968 .

[8]  A. Rao Discussion: “On the Torsion of Isotropic Prismatic Rods With a Parallelogram Cross Section” (Kennedy, J. B., 1967, ASME J. Appl. Mech., 34, pp. 220–221) , 1967 .

[9]  J. Kennedy On the Torsion of Isotropic Prismatic Rods With a Parallelogram Cross Section , 1967 .

[10]  A. Mullin,et al.  Group Theory and its Applications to Physical Problems , 1962 .

[11]  O. Zienkiewicz,et al.  TORSION OF COMPOUND BARS--A RELAXATION SOLUTION , 1960 .

[12]  C. M. Andersen,et al.  Use of computerized symbolic integration in finite element development , 1974, ACM '74.

[13]  V. A. Pulmano,et al.  Torsion of Nonhomogeneous Anisotropic Bars , 1974 .

[14]  Udo Meissner,et al.  A mixed finite element model for use in potential flow problems , 1973 .

[15]  T. Furuike,et al.  Computerized multiple level substructuring analysis , 1972 .

[16]  Leonard R. Herrmann,et al.  Elastic Torsional Analysis of Irregular Shapes , 1965 .

[17]  M. Hamermesh Group theory and its application to physical problems , 1962 .