Exact and Approximated Option Pricing in a Stochastic Volatility Jump-Diffusion Model

We propose a stochastic volatility jump-diffusion model for option pricing with contemporaneous jumps in both spot return and volatility dynamics. The model admits, in the spirit of Heston, a closed-form solution for European-style options. To evaluate more complex derivatives for which there is no explicit pricing expression, such as barrier options, a numerical methodology, based on an “exact algorithm” proposed by Broadie and Kaya, is applied. This technique is called exact as no discretisation of dynamics is required. We end up testing the goodness of our methodology using, as real data, prices and implied volatilities from the DJ Euro Stoxx 50 market and providing some numerical results for barrier options and their Greeks.

[1]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[2]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[3]  B. Kamrad,et al.  Multinomial Approximating Models for Options with k State Variables , 1991 .

[4]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[5]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[6]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[7]  T. Vorst,et al.  The Binomial Model and the Greeks , 1994 .

[8]  G. Willard Calculating Prices and Sensitivities for Path-Independent Derivatives Securities in Multifactor Models , 1996 .

[9]  M. Broadie,et al.  American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods , 1996 .

[10]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[11]  P. Glasserman,et al.  Pricing American-style securities using simulation , 1997 .

[12]  David S. Bates Post-&Apos;87 Crash Fears in S&P 500 Futures Options , 1997 .

[13]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[14]  D. Lamberton,et al.  Introduction au calcul stochastique appliqué à la finance , 1997 .

[15]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[16]  D. Madan,et al.  Spanning and Derivative-Security Valuation , 2000 .

[17]  D. Duffie,et al.  Transform Analysis and Asset Pricing for Affine Jump-Diffusions , 1999 .

[18]  Nicholas G. Polson,et al.  The Impact of Jumps in Volatility and Returns , 2000 .

[19]  David S. Bates Post-'87 crash fears in the S&P 500 futures option market , 2000 .

[20]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study , 2001 .

[21]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study $ , 2002 .

[22]  R. G. Ingalls,et al.  PROCEEDINGS OF THE 2002 WINTER SIMULATION CONFERENCE , 2002 .

[23]  S. Pasquali,et al.  An alternative model for evaluating exchange rates derivatives with stochastic volatility , 2004 .

[24]  Mark Broadie,et al.  Exact simulation of option Greeks under stochastic volatility and jump diffusion models , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[25]  M. Rockinger,et al.  Estimation of Jump-Diffusion Processes Via Empirical Characteristic Functions , 2005 .

[26]  F. Hanson,et al.  Option pricing for a stochastic-volatility jump-diffusion model with log-uniform jump-amplitudes , 2006, 2006 American Control Conference.

[27]  Mark Broadie,et al.  Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes , 2006, Oper. Res..

[28]  S. Pasquali,et al.  Option valuation in a stochastic volatility jump-diffusion model , 2008 .

[29]  Michael Mania,et al.  Mean-Variance Hedging Under Partial Information , 2008, SIAM J. Control. Optim..