Hydrogen vs. halogen bonding in crystals of 2,5-dibromothiophene-3-carboxylic acid derivatives

[1]  G. Cavallo,et al.  Halogen Bonding in Perovskite Solar Cells: A New Tool for Improving Solar Energy Conversion , 2021, Angewandte Chemie.

[2]  N. A. Bokach,et al.  Comparative Structural Study of Three Tetrahalophthalic Anhydrides: Recognition of X···O(anhydride) Halogen Bond and πh···O(anhydride) Interaction , 2021, Molecules.

[3]  Lokman Torun,et al.  Ionic interaction of tri-armed structure based on benzene ring: synthesis and characterization , 2021, Monatshefte für Chemie - Chemical Monthly.

[4]  F. Zhou,et al.  Unexpected organic hydrate luminogens in the solid state , 2021, Nature Communications.

[5]  A. Frontera,et al.  Azine Steric Hindrances Switch Halogen Bonding to N-Arylation upon Interplay with σ-Hole Donating Haloarenenitriles. , 2021, Chemistry, an Asian journal.

[6]  V. Boyarskiy,et al.  2,5-Dibromothiophenes: Halogen Bond Involving Packing Patterns and Their Relevance to Solid-State Polymerization , 2021 .

[7]  A. Nicholas,et al.  Impact of noncovalent interactions on structural and photophysical properties of zero-dimensional tellurium(iv) perovskites , 2021, Journal of Materials Chemistry C.

[8]  M. Vovk,et al.  Iodonium salts as efficient iodine(iii)-based noncovalent organocatalysts for Knorr-type reactions , 2021, RSC advances.

[9]  S. Scheiner Comparison of Bifurcated Halogen with Hydrogen Bonds , 2021, Molecules.

[10]  A. Frontera,et al.  Diaryliodonium as a double σ-hole donor: the dichotomy of thiocyanate halogen bonding provides divergent solid state arylation by diaryliodonium cations , 2020, Organic Chemistry Frontiers.

[11]  A. A. Eliseeva,et al.  One-Pot Route to X-perfluoroarenes (X = Br, I) Based on FeIII-Assisted C–F Functionalization and Utilization of These Arenes as Building Blocks for Crystal Engineering Involving Halogen Bonding , 2020, Crystal Growth & Design.

[12]  V. Boyarskiy,et al.  The halogen bond with isocyano carbon reduces isocyanide odor , 2020, Nature Communications.

[13]  F. Çakar,et al.  Synthesis and liquid crystalline properties of new triazine-based π-conjugated macromolecules with chiral side groups , 2020, Turkish journal of chemistry.

[14]  Yanli Yin,et al.  Cooperative photoredox and chiral hydrogen-bonding catalysis , 2020, Organic Chemistry Frontiers.

[15]  R. Evarestov,et al.  Noncovalent Sulfoxide–Nitrile Coupling Involving Four-Center Heteroleptic Dipole–Dipole Interactions between the Sulfinyl and Nitrile Groups , 2020 .

[16]  K. Rhee,et al.  An overview on the synthesis and recent applications of conducting poly(3,4-ethylenedioxythiophene) (PEDOT) in industry and biomedicine , 2020, Journal of Materials Science.

[17]  C. Schmidt,et al.  Neuron-targeted electrical modulation , 2020, Science.

[18]  A. Rozhkov,et al.  Reverse Sandwich Structures from Interplay between Lone Pair−π-Hole Atom-Directed C···dz2[M] and Halogen Bond Interactions , 2020 .

[19]  Xinrui Miao,et al.  Cooperation and competition of hydrogen and halogen bonds in 2D self-assembled nanostructures based on bromine substituted coumarins , 2019, New Journal of Chemistry.

[20]  S. Huber,et al.  Catalysis of Organic Reactions through Halogen Bonding , 2019, ACS Catalysis.

[21]  S. Scheiner,et al.  Comparison between Hydrogen and Halogen Bonds in Complexes of 6-OX-Fulvene with Pnicogen and Chalcogen Electron Donors. , 2019, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  Hui Lin,et al.  Hydrogen Bond Induced Green Solvent Processed High Performance Ternary Organic Solar Cells with Good Tolerance on Film Thickness and Blend Ratios , 2019, Advanced Functional Materials.

[23]  M. Jabłoński On the Uselessness of Bond Paths Linking Distant Atoms and on the Violation of the Concept of Privileged Exchange Channels. , 2019, ChemistryOpen.

[24]  Sukbok Chang,et al.  Asymmetric formation of γ-lactams via C–H amidation enabled by chiral hydrogen-bond-donor catalysts , 2019, Nature Catalysis.

[25]  Chi-Jung Chang,et al.  Recent Developments about Conductive Polymer Based Composite Photocatalysts , 2019, Polymers.

[26]  D. Lipomi,et al.  Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS , 2019, Advanced materials.

[27]  Peter Politzer,et al.  A perspective on quantum mechanics and chemical concepts in describing noncovalent interactions. , 2018, Physical chemistry chemical physics : PCCP.

[28]  Samir H. Chikkali,et al.  Hydrogen-Bonding-Assisted Supramolecular Metal Catalysis. , 2018, Chemistry, an Asian journal.

[29]  H. Fu,et al.  Enhanced Room-Temperature Phosphorescence through Intermolecular Halogen/Hydrogen Bonding. , 2018, Chemistry.

[30]  Miroslaw Jablonski,et al.  Bond paths between distant atoms do not necessarily indicate dominant interactions , 2018, J. Comput. Chem..

[31]  V. Boyarskiy,et al.  Pt/Pd and I/Br Isostructural Exchange Provides Formation of C–I···Pd, C–Br···Pt, and C–Br···Pd Metal-Involving Halogen Bonding , 2018, Crystal Growth & Design.

[32]  Alexander M Seifalian,et al.  Conductive Polymers: Opportunities and Challenges in Biomedical Applications. , 2018, Chemical reviews.

[33]  C. Aakeröy,et al.  Competition between hydrogen bonds and halogen bonds: a structural study , 2018 .

[34]  Kristin M. Hutchins Functional materials based on molecules with hydrogen-bonding ability: applications to drug co-crystals and polymer complexes , 2018, Royal Society Open Science.

[35]  V. Boyarskiy,et al.  Ligation-Enhanced π-Hole···π Interactions Involving Isocyanides: Effect of π-Hole···π Noncovalent Bonding on Conformational Stabilization of Acyclic Diaminocarbene Ligands. , 2018, Inorganic chemistry.

[36]  Wenyong Lai,et al.  Printable Transparent Conductive Films for Flexible Electronics , 2018, Advanced materials.

[37]  P. Plyusnin,et al.  Bromine-rich complexes of bismuth: experimental and theoretical studies. , 2018, Dalton transactions.

[38]  K. Stevenson,et al.  Antimony (V) Complex Halides: Lead‐Free Perovskite‐Like Materials for Hybrid Solar Cells , 2018 .

[39]  D. Samsonenko,et al.  One-dimensional polymeric polybromotellurates(IV): structural and theoretical insights into halogen⋯halogen contacts , 2017 .

[40]  Fei Zhao,et al.  Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications. , 2017, Accounts of chemical research.

[41]  A. Pombeiro,et al.  Resonance-Assisted Hydrogen Bonding as a Driving Force in Synthesis and a Synthon in the Design of Materials. , 2016, Chemistry.

[42]  P. Hobza,et al.  Competition between Halogen, Hydrogen and Dihydrogen Bonding in Brominated Carboranes. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[43]  Bei Gao,et al.  The Important Role of Halogen Bond in Substrate Selectivity of Enzymatic Catalysis , 2016, Scientific Reports.

[44]  P. Beer,et al.  Halogen bonding anion recognition. , 2016, Chemical communications.

[45]  Simon W. L. Hogan,et al.  Competition between hydrogen and halogen bonding in halogenated 1‐methyluracil: Water systems , 2016, J. Comput. Chem..

[46]  M. Spackman How Reliable Are Intermolecular Interaction Energies Estimated from Topological Analysis of Experimental Electron Densities , 2015 .

[47]  Lele Peng,et al.  Nanostructured conductive polymers for advanced energy storage. , 2015, Chemical Society reviews.

[48]  C. Aakeröy,et al.  A systematic structural study of halogen bonding versus hydrogen bonding within competitive supramolecular systems , 2015, IUCrJ.

[49]  D. Enders,et al.  Bifunctional Amine‐Squaramides: Powerful Hydrogen‐Bonding Organocatalysts for Asymmetric Domino/Cascade Reactions , 2015 .

[50]  M. Abdelhamid,et al.  Storing energy in plastics: a review on conducting polymers & their role in electrochemical energy storage , 2015 .

[51]  G. Sheldrick SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.

[52]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[53]  Neil R Champness,et al.  Surface-based supramolecular chemistry using hydrogen bonds. , 2014, Accounts of chemical research.

[54]  Shant Shahbazian,et al.  Toward a consistent interpretation of the QTAIM: tortuous link between chemical bonds, interactions, and bond/line paths. , 2014, Chemistry.

[55]  P. Beer,et al.  Halogen- and hydrogen-bonding catenanes for halide-anion recognition. , 2014, Chemistry.

[56]  Konrad Wojciechowski,et al.  Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells. , 2014, Nano letters.

[57]  F. E. Jorge,et al.  All-electron double zeta basis sets for the most fifth-row atoms: Application in DFT spectroscopic constant calculations , 2013 .

[58]  Mihai Irimia-Vladu,et al.  Hydrogen-bonds in molecular solids - from biological systems to organic electronics. , 2013, Journal of materials chemistry. B.

[59]  Pierangelo Metrangolo,et al.  Definition of the halogen bond (IUPAC Recommendations 2013) , 2013 .

[60]  Pierangelo Metrangolo,et al.  The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances , 2013, Accounts of chemical research.

[61]  M. Scholfield,et al.  Halogen bonding (X‐bonding): A biological perspective , 2013, Protein science : a publication of the Protein Society.

[62]  A. Joerger,et al.  Principles and applications of halogen bonding in medicinal chemistry and chemical biology. , 2013, Journal of medicinal chemistry.

[63]  Christopher D. McTiernan,et al.  Organic surface modification using stable conducting materials , 2012 .

[64]  F. Rosei,et al.  Halogen bonds in 2D supramolecular self-assembly of organic semiconductors. , 2012, Nanoscale.

[65]  G. Cavallo,et al.  Halogen Bonding versus Hydrogen Bonding in Driving Self‐Assembly and Performance of Light‐Responsive Supramolecular Polymers , 2012 .

[66]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[67]  J. Hupp,et al.  Urea metal-organic frameworks as effective and size-selective hydrogen-bond catalysts. , 2012, Journal of the American Chemical Society.

[68]  David J. Nesbitt,et al.  Definition of the hydrogen bond (IUPAC Recommendations 2011) , 2011 .

[69]  Jean-Philip Piquemal,et al.  NCIPLOT: a program for plotting non-covalent interaction regions. , 2011, Journal of chemical theory and computation.

[70]  F. E. Jorge,et al.  All-electron double zeta basis sets for platinum: Estimating scalar relativistic effects on platinum(II) anticancer drugs , 2010 .

[71]  Peter Politzer,et al.  Directional tendencies of halogen and hydrogen bonds , 2010 .

[72]  Luigi Fabbrizzi,et al.  Anion recognition by hydrogen bonding: urea-based receptors. , 2010, Chemical Society reviews.

[73]  F. E. Jorge,et al.  Gaussian basis set of double zeta quality for atoms Rb through Xe: application in non-relativistic and relativistic calculations of atomic and molecular properties , 2010 .

[74]  Timothy Clark,et al.  Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. , 2010, Physical chemistry chemical physics : PCCP.

[75]  Julia Contreras-García,et al.  Revealing noncovalent interactions. , 2010, Journal of the American Chemical Society.

[76]  B. Kuhn,et al.  Intramolecular hydrogen bonding in medicinal chemistry. , 2010, Journal of medicinal chemistry.

[77]  S. McDowell Halogen and hydrogen bonding to the Br atom in complexes of FBr. , 2010, The Journal of chemical physics.

[78]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[79]  F. E. Jorge,et al.  Contracted Gaussian basis sets for Douglas-Kroll-Hess calculations: Estimating scalar relativistic effects of some atomic and molecular properties. , 2009, The Journal of chemical physics.

[80]  P. Beer,et al.  Halogen Bonding in Supramolecular Chemistry. , 2008, Chemical reviews.

[81]  P. Metrangolo,et al.  Mutual induced coordination in halogen-bonded anionic assemblies with (6,3) cation-templated topologies. , 2008, Chemical communications.

[82]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[83]  C. Aakeröy,et al.  Structural competition between hydrogen bonds and halogen bonds. , 2007, Journal of the American Chemical Society.

[84]  Mark S. Taylor,et al.  Asymmetric catalysis by chiral hydrogen-bond donors. , 2006, Angewandte Chemie.

[85]  E. Molins,et al.  From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems , 2002 .

[86]  Elena S. Shubina,et al.  New types of hydrogen bonding in organometallic chemistry , 2002 .

[87]  T. Steiner The hydrogen bond in the solid state. , 2002, Angewandte Chemie.

[88]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[89]  J. Thornton,et al.  Satisfying hydrogen bonding potential in proteins. , 1994, Journal of molecular biology.

[90]  R. Bader,et al.  A quantum theory of molecular structure and its applications , 1991 .

[91]  T. Thomas,et al.  Molecular charge distribution, core-ionization energies, and the point-charge approximation , 1991 .

[92]  C. Perrin,et al.  Atomic size dependence of Bader electron populations: significance for questions of resonance stabilization , 1991 .

[93]  H. Fjellvåg,et al.  Structural properties of ZrTe5 and HfTe5 as seen by powder diffraction , 1986 .

[94]  A. Bondi van der Waals Volumes and Radii , 1964 .

[95]  A. A. Eliseeva,et al.  Electron belt-to-σ-hole switch of noncovalently bound iodine(i) atoms in dithiocarbamate metal complexes , 2021 .

[96]  Yanmin Wang,et al.  Sensors based on conductive polymers and their composites: a review , 2019, Polymer International.

[97]  G. Starova,et al.  Metal-mediated generation of triazapentadienate-terminated di- and trinuclear μ2-pyrazolate NiII species and control of their nuclearity , 2017 .