Information Retrieval Advances using Relevance Feedback

Relevance Feedback (RF) is a powerful technique whereby a user can instruct an Information Retrieval (IR) system to find additional relevant documents by providing relevance information on certain documents or query terms. There are several major design decisions that can affect how a RF system can help users. In this paper, I present a brief literature survey covering two emphases of RF: term selection and term weighting in the two prevalent IR models: probabilistic and vector-based. I then summarize how both the techniques and the underlying models can be combined and to what ends. Finally, I hypothesize why Relevance Feedback is not prevalent on World Wide Web search services, and give suggestions on which methods may be appropriate and what, if anything, should be done to add feedback techniques to Web searching.

[1]  Nicholas J. Belkin,et al.  Combining Evidence for Information Retrieval , 1993, TREC.

[2]  Stephen E. Robertson,et al.  On Term Selection for Query Expansion , 1991, J. Documentation.

[3]  Van Rijsbergen,et al.  A theoretical basis for the use of co-occurence data in information retrieval , 1977 .

[4]  Oren Etzioni,et al.  Multi-Service Search and Comparison Using the MetaCrawler , 1995 .

[5]  W. Bruce Croft,et al.  The use of phrases and structured queries in information retrieval , 1991, SIGIR '91.

[6]  Oren Etzioni,et al.  Fast and Intuitive Clustering of Web Documents , 1997, KDD.

[7]  S. Robertson The probability ranking principle in IR , 1997 .

[8]  E. A. Fox,et al.  Combining the Evidence of Multiple Query Representations for Information Retrieval , 1995, Inf. Process. Manag..

[9]  S. E. Robertson,et al.  On Relevance weight estimation and Query Expansion , 1986, J. Documentation.

[10]  B. C. Brookes THE MEASURES OF INFORMATION RETRIEVAL EFFECTIVENESS PROPOSED BY SWETS , 1968 .

[11]  Donna K. Harman,et al.  Relevance feedback revisited , 1992, SIGIR '92.

[12]  W. Bruce Croft,et al.  Relevance feedback and inference networks , 1993, SIGIR.

[13]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[14]  W. Bruce Croft,et al.  INQUERY System Overview , 1993, TIPSTER.

[15]  Gerard Salton,et al.  Mathematics and Information Retrieval , 1979, J. Documentation.

[16]  Tadeusz Radecki,et al.  Incorporation of Relevance Feedback into Boolean Retrieval System , 1982, SIGIR.

[17]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[18]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[19]  Nicholas J. Belkin,et al.  A case for interaction: a study of interactive information retrieval behavior and effectiveness , 1996, CHI.

[20]  Efthimis N. Efthimiadis,et al.  User Choices: A new Yardstick for the Evaluation of Ranking Algorithms for Interactive Query Expansion , 1995, Inf. Process. Manag..

[21]  Efthimis N. Efthimiadis,et al.  A user-centred evaluation of ranking algorithms for interactive query expansion , 1993, SIGIR.

[22]  Karen Spärck Jones Search Term Relevance Weighting given Little Relevance Information , 1997, J. Documentation.

[23]  B. Pinkerton,et al.  Finding What People Want : Experiences with the WebCrawler , 1994, WWW Spring 1994.

[24]  Valerie Galpin,et al.  Relevance feedback in a public access catalogue for a research library: MUSCAT at the Scott Polar Research Institute Library , 1988 .

[25]  Chris Buckley,et al.  New Retrieval Approaches Using SMART: TREC 4 , 1995, TREC.

[26]  Claire Cardie,et al.  An Analysis of Statistical and Syntactic Phrases , 1997, RIAO.

[27]  C. J. van Rijsbergen,et al.  An Evaluation of feedback in Document Retrieval using Co‐Occurrence Data , 1978, J. Documentation.

[28]  Massimo Marchiori,et al.  The Quest for Correct Information on the Web: Hyper Search Engines , 1997, Comput. Networks.

[29]  K. Sparck Jones,et al.  INFORMATION RETRIEVAL TEST COLLECTIONS , 1976 .

[30]  Gerald J. Kowalski,et al.  Information Retrieval Systems , 1997, The Information Retrieval Series.

[31]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[32]  Tadeusz Radecki,et al.  Probabilistic methods for ranking output documents in conventional Boolean retrieval systems , 1988, Inf. Process. Manag..

[33]  Ellen Spertus,et al.  ParaSite: Mining Structural Information on the Web , 1997, Comput. Networks.

[34]  G. Salton,et al.  Automatic query formulations in information retrieval , 1982, J. Am. Soc. Inf. Sci..

[35]  W. Bruce Croft,et al.  Inference networks for document retrieval , 1989, SIGIR '90.

[36]  Gerard Salton,et al.  Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer , 1989 .

[37]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[38]  Donna K. Harman,et al.  IRX: an information retrieval system for experimentation and user applications , 1988, SIGF.

[39]  Gerard Salton,et al.  The estimation of Term Relevance weights using Relevance feedback , 1981, J. Documentation.

[40]  Tim Bray,et al.  Measuring the Web , 1996, World Wide Web J..

[41]  Brian A. LaMacchia The Internet Fish Construction Kit , 1997, Comput. Networks.

[42]  Edward A. Fox,et al.  Combination of Multiple Searches , 1993, TREC.

[43]  Donna K. Harman,et al.  Overview of the Fourth Text REtrieval Conference (TREC-4) , 1995, TREC.

[44]  Edward A. Fox,et al.  Advanced feedback methods in information retrieval , 1985, J. Am. Soc. Inf. Sci..