Timing and Location of Synaptic Inputs Determine Modes of Subthreshold Integration in Striatal Medium Spiny Neurons

Medium spiny neurons (MSNs) are the principal cells of the striatum and perform a central role in sensorimotor processing. MSNs must integrate many excitatory inputs located across their dendrites to fire action potentials and enable striatal function. However, the dependence of synaptic responses on the temporal and spatial distribution of these inputs remains unknown. Here, we use whole-cell recordings, two-photon microscopy, and two-photon glutamate uncaging to examine subthreshold synaptic integration in MSNs from acute rat brain slices. We find that synaptic responses can summate sublinearly, linearly, or supralinearly depending on the spatiotemporal pattern of activity. Repetitive activity at single inputs leads to sublinear summation, reflecting long-lived AMPA receptor desensitization. In contrast, asynchronous activity at multiple inputs generates linear summation, with synapses on neighboring spines functioning independently. Finally, synchronous activity at multiple inputs triggers supralinear summation at depolarized potentials, reflecting activation of NMDA receptors and L-type calcium channels. Thus, the properties of subthreshold integration in MSNs are determined by the distribution of synaptic inputs and the differential activation of multiple postsynaptic conductances.

[1]  Shubhodeep Chakrabarti,et al.  Topography of cortical projections to the dorsolateral neostriatum in rats: Multiple overlapping sensorimotor pathways , 2006, The Journal of comparative neurology.

[2]  Peter Redgrave,et al.  Basal Ganglia , 2020, Encyclopedia of Autism Spectrum Disorders.

[3]  P. Calabresi,et al.  Post-receptor mechanisms underlying striatal long-term depression , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  Anatol C. Kreitzer,et al.  Interaction of Postsynaptic Receptor Saturation with Presynaptic Mechanisms Produces a Reliable Synapse , 2002, Neuron.

[5]  J. Magee,et al.  State-Dependent Dendritic Computation in Hippocampal CA1 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[6]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[7]  Anatol C. Kreitzer,et al.  Dopamine Modulation of State-Dependent Endocannabinoid Release and Long-Term Depression in the Striatum , 2005, The Journal of Neuroscience.

[8]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[9]  F. H. Lopes da Silva,et al.  Electrophysiology of the Hippocampal and Amygdaloid Projections to the Nucleus Accumbens of the Rat: Convergence, Segregation, and Interaction of Inputs , 1998, The Journal of Neuroscience.

[10]  R. Tsien,et al.  Variability of Neurotransmitter Concentration and Nonsaturation of Postsynaptic AMPA Receptors at Synapses in Hippocampal Cultures and Slices , 1999, Neuron.

[11]  Shaul Hestrin,et al.  Activation and desensitization of glutamate-activated channels mediating fast excitatory synaptic currents in the visual cortex , 1992, Neuron.

[12]  Roberto Malinow,et al.  Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated , 1999, Nature.

[13]  J. Lübke,et al.  Functional Properties of AMPA and NMDA Receptors Expressed in Identified Types of Basal Ganglia Neurons , 1997, The Journal of Neuroscience.

[14]  C. Wilson,et al.  Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. , 1994, Journal of neurophysiology.

[15]  P. Calabresi,et al.  Long‐term Potentiation in the Striatum is Unmasked by Removing the Voltage‐dependent Magnesium Block of NMDA Receptor Channels , 1992, The European journal of neuroscience.

[16]  G Bernardi,et al.  Synaptic and intrinsic control of membrane excitability of neostriatal neurons. I. An in vivo analysis. , 1990, Journal of neurophysiology.

[17]  Charles J. Wilson,et al.  Connectivity and Convergence of Single Corticostriatal Axons , 1998, The Journal of Neuroscience.

[18]  D. Lovinger,et al.  Decreased probability of neurotransmitter release underlies striatal long-term depression and postnatal development of corticostriatal synapses. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Jeffrey S. Diamond,et al.  Asynchronous release of synaptic vesicles determines the time course of the AMPA receptor-mediated EPSC , 1995, Neuron.

[20]  D. James Surmeier,et al.  Voltage-clamp analysis of a transient potassium current in rat neostriatal neurons , 1988, Brain Research.

[21]  G Bernardi,et al.  Synaptic and intrinsic control of membrane excitability of neostriatal neurons. II. An in vitro analysis. , 1990, Journal of neurophysiology.

[22]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[23]  Peter Somogyi,et al.  Cell Type- and Subcellular Position-Dependent Summation of Unitary Postsynaptic Potentials in Neocortical Neurons , 2002, The Journal of Neuroscience.

[24]  D. James Surmeier,et al.  G-Protein-Coupled Receptor Modulation of Striatal CaV1.3 L-Type Ca Channels Is Dependent on a Shank-Binding Domain , 2005 .

[25]  W. Spain,et al.  Linear to supralinear summation of AMPA-mediated EPSPs in neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[26]  M. Margulis,et al.  Temporal integration can readily switch between sublinear and supralinear summation. , 1998, Journal of neurophysiology.

[27]  C. Wilson,et al.  Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. , 1989, Journal of neurophysiology.

[28]  J. Bufler,et al.  Kinetics of AMPA‐type glutamate receptor channels in rat caudate‐putamen neurones show a wide range of desensitization but distinct recovery characteristics , 1998, The European journal of neuroscience.

[29]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[30]  G. Akopian,et al.  Reliable long‐lasting depression interacts with variable short‐term facilitation to determine corticostriatal paired‐pulse plasticity in young rats , 2007, The Journal of physiology.

[31]  K. A. Yamada,et al.  Diazoxide blocks glutamate desensitization and prolongs excitatory postsynaptic currents in rat hippocampal neurons. , 1992, The Journal of physiology.

[32]  K. Svoboda,et al.  Facilitation at single synapses probed with optical quantal analysis , 2002, Nature Neuroscience.

[33]  Adrian Y. C. Wong,et al.  Distinguishing between Presynaptic and Postsynaptic Mechanisms of Short-Term Depression during Action Potential Trains , 2003, Journal of Neuroscience.

[34]  B Sakmann,et al.  AMPA Receptor Channels with Long-Lasting Desensitization in Bipolar Interneurons Contribute to Synaptic Depression in a Novel Feedback Circuit in Layer 2/3 of Rat Neocortex , 2001, The Journal of Neuroscience.

[35]  Scott M Thompson,et al.  Unique roles of SK and Kv4.2 potassium channels in dendritic integration. , 2004, Neuron.

[36]  C. Jahr,et al.  Multivesicular Release at Climbing Fiber-Purkinje Cell Synapses , 2001, Neuron.

[37]  G. Barrionuevo,et al.  Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[38]  G. Akopian,et al.  Corticostriatal paired-pulse potentiation produced by voltage-dependent activation of NMDA receptors and L-type Ca(2+) channels. , 2002, Journal of neurophysiology.

[39]  Wade G. Regehr,et al.  Contributions of Receptor Desensitization and Saturation to Plasticity at the Retinogeniculate Synapse , 2002, Neuron.

[40]  W. Regehr,et al.  Fast Vesicle Replenishment and Rapid Recovery from Desensitization at a Single Synaptic Release Site , 2007, The Journal of Neuroscience.

[41]  C. Cepeda,et al.  Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. , 1998, Journal of neurophysiology.

[42]  D. Henze,et al.  Amplification of perforant-path EPSPs in CA3 pyramidal cells by LVA calcium and sodium channels. , 1998, Journal of Neurophysiology.

[43]  J. Bargas,et al.  Spontaneous Voltage Oscillations in Striatal Projection Neurons in a Rat Corticostriatal Slice , 2003, The Journal of physiology.

[44]  Matthew A Xu-Friedman,et al.  Ultrastructural Contributions to Desensitization at Cerebellar Mossy Fiber to Granule Cell Synapses , 2003, The Journal of Neuroscience.

[45]  R. Yuste,et al.  Linear Summation of Excitatory Inputs by CA1 Pyramidal Neurons , 1999, Neuron.

[46]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.

[47]  Karel Svoboda,et al.  ScanImage: Flexible software for operating laser scanning microscopes , 2003, Biomedical engineering online.

[48]  H. C. Cromwell,et al.  Decortication decreases paired-pulse facilitation in the neostriatal slice of the rat , 1995, Neuroscience Letters.

[49]  P. Calabresi,et al.  Long-term synaptic depression in the striatum: physiological and pharmacological characterization , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[51]  J. Tepper,et al.  Postnatal Development of the Rat Neostriatum: Electrophysiological, Light- and Electron-Microscopic Studies , 1998, Developmental Neuroscience.

[52]  B. Sabatini,et al.  State-Dependent Calcium Signaling in Dendritic Spines of Striatal Medium Spiny Neurons , 2004, Neuron.

[53]  L. Vyklický,et al.  Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  Charles J. Wilson,et al.  The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  Charles J. Wilson,et al.  Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. , 1997, Journal of neurophysiology.

[56]  K. Tang,et al.  Dopamine-dependent synaptic plasticity in striatum during in vivo development. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[57]  J. Bargas,et al.  Ca2+-activated outward currents in neostriatal neurons , 1999, Neuroscience.

[58]  Robert C. Malenka,et al.  Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models , 2007, Nature.

[59]  J. Kao,et al.  Compartmentalized and Binary Behavior of Terminal Dendrites in Hippocampal Pyramidal Neurons , 2001, Science.

[60]  Charles J. Wilson,et al.  Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. , 1994, Journal of neurophysiology.

[61]  A. Grace,et al.  Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  Charles J. Wilson,et al.  Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. , 2002, Journal of neurophysiology.