Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach

A micromechanical multiscale model which estimates the elastic properties of cortical bone as a function of porosity and mineral content is presented. The steps of the model are divided into two main phases. In the first one, the elastic properties of the collagen fibril, collagen fiber and lamella are given. In the second phase, porosity is included in the lamella in the form of canaliculi, lacunae and Haversian canals, to provide the elastic properties of the osteonal tissue. Then, a symmetrization technique is used to estimate the transversely isotropic elasticity tensor of the osteon. Osteons are superimposed using a self-consistent scheme, and finally, the fluid filling the pores is included to estimate the elastic constants of the undrained cortical tissue. The main novelty of the model presented here is the possibility of varying the mineral content of bone, considering that mineralization begins from the inner levels, initially intrafibrillar and then interfibrillar. Correlations of the elastic properties of cortical bone obtained with this model on the one hand, and porosity and ash fraction on the other hand, are estimated.

[1]  Stephen C. Cowin,et al.  The estimated elastic constants for a single bone osteonal lamella , 2008, Biomechanics and modeling in mechanobiology.

[2]  D. Dahlin,et al.  Bone Remodeling Dynamics , 1964 .

[3]  S. Cowin,et al.  Oscillatory bending of a poroelastic beam , 1994 .

[4]  G. Pharr,et al.  Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation. , 2002, Journal of biomechanics.

[5]  Young June Yoon,et al.  An estimate of anisotropic poroelastic constants of an osteon , 2008, Biomechanics and modeling in mechanobiology.

[6]  E D Pellegrino,et al.  The chemical anatomy of bone. I. A comparative study of bone composition in sixteen vertebrates. , 1969, The Journal of bone and joint surgery. American volume.

[7]  S. Cowin,et al.  Estimates of the peak pressures in bone pore water. , 1998, Journal of biomechanical engineering.

[8]  G. Dvorak,et al.  Rate form of the Eshelby and Hill tensors , 2002 .

[9]  J. Jowsey,et al.  The microradiographic appearance of normal bone tissue at various ages , 1960 .

[10]  W. Ching,et al.  Ab initio elastic properties and tensile strength of crystalline hydroxyapatite. , 2009, Acta biomaterialia.

[11]  R. Naghdabadi,et al.  Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure. , 2009, Journal of biomechanics.

[12]  小林 昭一 "MICROMECHANICS: Overall Properties of Heterogeneous Materials", S.Nemat-Nasser & M.Hori(著), (1993年, North-Holland発行, B5判, 687ページ, DFL.260.00) , 1995 .

[13]  J. K. Gong,et al.  Composition of trabecular and cortical bone , 1964, The Anatomical record.

[14]  A. Boyde,et al.  Distribution of lamellae in human femoral shafts deformed by bending with inferences on mechanical properties. , 1987, Bone.

[15]  G. Pharr,et al.  Variations in the individual thick lamellar properties within osteons by nanoindentation. , 1999, Bone.

[16]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[17]  D. Burr,et al.  Stiffness of compact bone: effects of porosity and density. , 1988, Journal of biomechanics.

[18]  S. Lees,et al.  A study of some properties of a sample of bovine cortical bone using ultrasound , 1979, Calcified Tissue International.

[19]  S. Weiner,et al.  Bone structure: from ångstroms to microns , 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[20]  N Guzelsu,et al.  Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content. , 2007, Journal of biomechanics.

[21]  A. Parfitt Bone remodeling and bone loss: understanding the pathophysiology of osteoporosis. , 1987, Clinical obstetrics and gynecology.

[22]  T. M. Boyce,et al.  Aging changes in osteon mineralization in the human femoral neck. , 1994, Bone.

[23]  J. Katz Hard tissue as a composite material. I. Bounds on the elastic behavior. , 1971, Journal of biomechanics.

[24]  X. Guo,et al.  Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method. , 2006, Journal of biomechanical engineering.

[25]  J Y Rho,et al.  Anisotropic properties of human tibial cortical bone as measured by nanoindentation , 2002, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[26]  S. Cowin,et al.  Load carrying capacity of the pore pressure in a poroelastic beam subject to oscillatory excitation , 1996 .

[27]  T. Keller Predicting the compressive mechanical behavior of bone. , 1994, Journal of biomechanics.

[28]  S. Cowin,et al.  Fluid pressure relaxation depends upon osteonal microstructure: modeling an oscillatory bending experiment. , 1999, Journal of biomechanics.

[29]  J. Currey The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone. , 1988, Journal of biomechanics.

[30]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[31]  W. Landis,et al.  Aspects of mineral structure in normally calcifying avian tendon. , 2001, Journal of structural biology.

[32]  J. M. García-Aznar,et al.  A bone remodelling model coupling microdamage growth and repair by 3D BMU-activity , 2005, Biomechanics and modeling in mechanobiology.

[33]  G. Beaupré,et al.  A theoretical analysis of the contributions of remodeling space, mineralization, and bone balance to changes in bone mineral density during alendronate treatment. , 2001, Bone.

[34]  A. Boskey,et al.  FTIR microspectroscopic analysis of human osteonal bone , 1996, Calcified Tissue International.

[35]  Christian Hellmich,et al.  'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. , 2007, Journal of theoretical biology.

[36]  Wai-Yim Ching,et al.  Ab Initio Calculation of Elastic Constants of Ceramic Crystals , 2007 .

[37]  A. Ascenzi,et al.  The tensile properties of single osteons , 1967, The Anatomical record.

[38]  S. Cowin A Recasting of Anisotropic Poroelasticity in Matrices of Tensor Components , 2003 .

[39]  Timo Jämsä,et al.  Mechanical properties in long bones of rat osteopetrotic mutations. , 2002, Journal of biomechanics.

[40]  Steven M. Tommasini,et al.  Biological Co‐Adaptation of Morphological and Composition Traits Contributes to Mechanical Functionality and Skeletal Fragility , 2007, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[41]  Weimin Yue,et al.  Specimen-specific multi-scale model for the anisotropic elastic constants of human cortical bone. , 2009, Journal of biomechanics.

[42]  M. Ferretti,et al.  Histomorphometric study on the osteocyte lacuno-canalicular network in animals of different species. I. Woven-fibered and parallel-fibered bones. , 1998, Italian journal of anatomy and embryology = Archivio italiano di anatomia ed embriologia.

[43]  S. Cowin,et al.  Estimation of the effective transversely isotropic elastic constants of a material from known values of the material's orthotropic elastic constants , 2002, Biomechanics and modeling in mechanobiology.

[44]  G. Beaupré,et al.  The influence of bone volume fraction and ash fraction on bone strength and modulus. , 2001, Bone.

[45]  R. Robinson,et al.  The water content of bone. I. The mass of water, inorganic crystals, organic matrix, and CO2 space components in a unit volume of the dog bone. , 1957, The Journal of bone and joint surgery. American volume.

[46]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[47]  X Edward Guo,et al.  The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity. , 2004, Journal of biomechanics.

[48]  J. Nyman,et al.  Effect of ultrastructural changes on the toughness of bone. , 2005, Micron.

[49]  D. Porter,et al.  Pragmatic multiscale modelling of bone as a natural hybrid nanocomposite , 2004 .

[50]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[51]  Felix W Wehrli,et al.  Diffusion of exchangeable water in cortical bone studied by nuclear magnetic resonance. , 2002, Biophysical journal.

[52]  W. Hayes,et al.  The compressive behavior of bone as a two-phase porous structure. , 1977, The Journal of bone and joint surgery. American volume.

[53]  I Sevostianov,et al.  Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone. , 2000, Journal of biomechanics.

[54]  Christian Hellmich,et al.  Mineral–collagen interactions in elasticity of bone ultrastructure – a continuum micromechanics approach , 2004 .

[55]  F. Wehrli,et al.  Water Content Measured by Proton‐Deuteron Exchange NMR Predicts Bone Mineral Density and Mechanical Properties , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[56]  C. Esling,et al.  Elastic properties of polycrystals in the Voigt‐Reuss‐Hill approximation , 1992 .

[57]  S Cusack,et al.  Determination of the elastic constants of collagen by Brillouin light scattering. , 1979, Journal of molecular biology.

[58]  S. Cowin Bone mechanics handbook , 2001 .

[59]  Christian Hellmich,et al.  Micromechanical Model for Ultrastructural Stiffness of Mineralized Tissues , 2002 .

[60]  R. Robinson,et al.  The Water Content of Bone , 1957 .

[61]  R. Recker,et al.  Bone histomorphometry : techniques and interpretation , 1983 .

[62]  M. Biot THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID , 1955 .

[63]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[64]  Stephen C Cowin,et al.  Estimation of bone permeability using accurate microstructural measurements. , 2006, Journal of biomechanics.

[65]  J M Crolet,et al.  Compact bone: numerical simulation of mechanical characteristics. , 1993, Journal of biomechanics.

[66]  P. C. Chou,et al.  Elastic Constants of Layered Media , 1972 .

[67]  S. Cowin,et al.  Compressible and incompressible constituents in anisotropic poroelasticity : The problem of unconfined compression of a disk , 2007 .