Similarity in loudness and distortion product otoacoustic emission input/output functions: implications for an objective hearing aid adjustment.

The aim of the present study was to compare distortion product otoacoustic emissions (DPOAEs) to loudness with regard to the potentiality of DPOAEs to determine characteristic quantities of the cochlear-impaired ear and to derive objective hearing aid parameters. Recently, Neely et al. [J. Acoust. Soc. Am. 114, 1499-1507 (2003)] compared DPOAE input/output functions to the Fletcher and Munson [J. Acoust. Soc. Am. 5, 82-108 (1933)] loudness function finding a close resemblance in the slope characteristics of both measures. The present study extended their work by performing both loudness and DPOAE measurements in the same subject sample, and by developing a method for the estimation of gain needed to compensate for loss of cochlear sensitivity and compression. DPOAEs and loudness exhibited similar behavior when plotted on a logarithmic scale and slope increased with increasing hearing loss, confirming the findings of Neely et al. To compensate for undesired nonpathological impacts on the magnitude of DPOAE level, normalization of DPOAE data was implemented. A close resemblance between gain functions based on loudness and normalized DPOAE data was achieved. These findings suggest that DPOAEs are able to quantify the loss of cochlear sensitivity and compression and thus might provide parameters for a noncooperative hearing aid adjustment.

[1]  H. Fletcher,et al.  Loudness, its definition, measurement and calculation. , 1933 .

[2]  P. A. Dorn,et al.  Further efforts to predict pure-tone thresholds from distortion product otoacoustic emission input/output functions. , 2003, The Journal of the Acoustical Society of America.

[3]  W. S. Rhode Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. , 1971, The Journal of the Acoustical Society of America.

[4]  Mark B. Gardner,et al.  The Dependence of Hearing Impairment on Sound Intensity , 1937 .

[5]  P. A. Dorn,et al.  Distortion product otoacoustic emission suppression tuning curves in normal-hearing and hearing-impaired human ears. , 2003, The Journal of the Acoustical Society of America.

[6]  E M Relkin,et al.  Is loudness simply proportional to the auditory nerve spike count? , 1997, The Journal of the Acoustical Society of America.

[7]  W. Arnold,et al.  Wachstumsverhalten der Distorsionsproduktemissionen bei kochleären Hörstörungen , 1995 .

[8]  J. Zwislocki,et al.  On Some Factors Affecting the Estimation of Loudness , 1960 .

[9]  G. K. Yates,et al.  Basilar membrane measurements and the travelling wave , 1986, Hearing Research.

[10]  Thomas Janssen,et al.  Optimal L 1−L 2 primary tone level separation remains independent of test frequency in humans , 2000, Hearing Research.

[11]  J. Allen,et al.  Loudness growth in 1/2-octave bands (LGOB)--a procedure for the assessment of loudness. , 1990, The Journal of the Acoustical Society of America.

[12]  R. Hellman,et al.  Loudness relations for individuals and groups in normal and impaired hearing. , 1990, The Journal of the Acoustical Society of America.

[13]  L. Robles,et al.  Basilar-membrane responses to tones at the base of the chinchilla cochlea. , 1997, The Journal of the Acoustical Society of America.

[14]  O. Heller,et al.  Hörfeldaudiometrie mit dem Verfahren der Kategorienunterteilung (KU) , 1985 .

[15]  R. Hellman,et al.  Rate of loudness growth for pure tones in normal and impaired hearing. , 1993, The Journal of the Acoustical Society of America.

[16]  B C Moore,et al.  Further evaluation of a model of loudness perception applied to cochlear hearing loss. , 1999, The Journal of the Acoustical Society of America.

[17]  P. Dallos The active cochlea , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  R. Schlauch,et al.  Basilar membrane nonlinearity and loudness. , 1998, The Journal of the Acoustical Society of America.

[19]  Volker Hohmann,et al.  An adaptive procedure for categorical loudness scaling. , 2002, The Journal of the Acoustical Society of America.

[20]  T. Janssen,et al.  Suppression tuning characteristics of the 2 f1-f2 distortion-product otoacoustic emission in humans. , 1995, The Journal of the Acoustical Society of America.

[21]  Minsheng Zhang,et al.  OHC response recruitment and its correlation with loudness recruitment , 1995, Hearing Research.

[22]  T. Janssen,et al.  The level and growth behavior of the 2 f1-f2 distortion product otoacoustic emission and its relationship to auditory sensitivity in normal hearing and cochlear hearing loss. , 1998, The Journal of the Acoustical Society of America.

[23]  P. H. Geiger,et al.  The Estimation of Fractional Loudnesses , 1932 .

[24]  P. A. Dorn,et al.  Cochlear compression estimates from measurements of distortion-product otoacoustic emissions. , 2003, The Journal of the Acoustical Society of America.

[25]  Johann A. Oswald,et al.  Weighted DPOAE input/output-functions: a tool for automatic assessment of hearing loss in clinical application. , 2003, Zeitschrift fur medizinische Physik.

[26]  T. Janssen,et al.  Growth behavior of the 2 f1-f2 distortion product otoacoustic emission in tinnitus. , 1998, The Journal of the Acoustical Society of America.

[27]  B. Moore,et al.  A revised model of loudness perception applied to cochlear hearing loss , 2004, Hearing Research.

[28]  S. S. Stevens On the psychophysical law. , 1957, Psychological review.

[29]  M. Whitehead,et al.  Effects of ear-canal standing waves on measurements of distortion-product otoacoustic emissions. , 1995, The Journal of the Acoustical Society of America.

[30]  M P Gorga,et al.  Comparison between intensity and pressure as measures of sound level in the ear canal. , 1998, The Journal of the Acoustical Society of America.

[31]  Ian M. Winter,et al.  Basilar membrane nonlinearity determines auditory nerve rate-intensity functions and cochlear dynamic range , 1990, Hearing Research.

[32]  William E. Brownell,et al.  Outer Hair Cell Electromotility and Otoacoustic Emissions , 1990, Ear and hearing.

[33]  A. Oxenham,et al.  A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing. , 1997, The Journal of the Acoustical Society of America.

[34]  Paul Boege,et al.  Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears. , 2002, The Journal of the Acoustical Society of America.

[35]  J. Siegel,et al.  Ear‐canal standing waves and high‐frequency sound calibration using otoacoustic emission probes , 1994 .