Meis1 establishes the pre-hemogenic endothelial state prior to Runx1 expression

Hematopoietic stem and progenitor cells (HSPCs) originate from an endothelial-to-hematopoietic transition (EHT) during embryogenesis. Characterization of early hemogenic endothelial (HE) cells is required to understand what drives hemogenic specification and to accurately define cells capable of undergoing EHT. Using Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq), we define the early subpopulation of pre-HE cells based on both surface markers and transcriptomes. We identify the transcription factor Meis1 as an essential regulator of hemogenic cell specification in the embryo prior to Runx1 expression. Meis1 is expressed at the earliest stages of EHT and distinguishes pre-HE cells primed towards the hemogenic trajectory from the arterial endothelial cells that continue towards a vascular fate. Endothelial-specific deletion of Meis1 impairs the formation of functional Runx1-expressing HE which significantly impedes the emergence of pre-HSPC via EHT. Our findings implicate Meis1 in a critical fate-determining step for establishing EHT potential in endothelial cells.

[1]  J. Junker,et al.  Multispecies RNA tomography reveals regulators of hematopoietic stem cell birth in the embryonic aorta. , 2020, Blood.

[2]  Qin Zhu,et al.  Developmental trajectory of pre-hematopoietic stem cell formation from endothelium. , 2020, Blood.

[3]  F. Tang,et al.  Embryonic endothelial evolution towards first hematopoietic stem cells revealed by single-cell transcriptomic and functional analyses , 2020, Cell Research.

[4]  D. Sprinzak,et al.  Notch ligand Dll4 impairs cell recruitment to aortic clusters and limits blood stem cell generation , 2020, The EMBO journal.

[5]  S. Teichmann,et al.  Single-cell transcriptomics identifies CD44 as a marker and regulator of endothelial to haematopoietic transition , 2020, Nature Communications.

[6]  J. Vilo,et al.  g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) , 2019, Nucleic Acids Res..

[7]  V. Kouskoff,et al.  Single-cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta , 2018, Nature Communications.

[8]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[9]  P. Hoodless,et al.  A knock-in mouse strain facilitates dynamic tracking and enrichment of MEIS1. , 2017, Blood advances.

[10]  B. Hadland,et al.  CD27 marks murine embryonic hematopoietic stem cells and type II prehematopoietic stem cells. , 2017, Blood.

[11]  B. Hadland,et al.  Murine hemogenic endothelial precursors display heterogeneous hematopoietic potential ex vivo. , 2017, Experimental hematology.

[12]  J. Aerts,et al.  SCENIC: Single-cell regulatory network inference and clustering , 2017, Nature Methods.

[13]  A. Engelman,et al.  Haematopoietic stem and progenitor cells from human pluripotent stem cells , 2017, Nature.

[14]  O. Elemento,et al.  Conversion of adult endothelium to immunocompetent haematopoietic stem cells , 2017, Nature.

[15]  V. Kouskoff,et al.  Hemangioblast, hemogenic endothelium, and primitive versus definitive hematopoiesis. , 2017, Experimental hematology.

[16]  F. Tang,et al.  Tracing haematopoietic stem cell formation at single-cell resolution , 2016, Nature.

[17]  M. Miller,et al.  Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion , 2016, PloS one.

[18]  Salam A. Assi,et al.  Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation , 2016, Developmental cell.

[19]  Crispin J. Miller,et al.  GFI1 proteins orchestrate the emergence of haematopoietic stem cells through recruitment of LSD1 , 2015, Nature Cell Biology.

[20]  W. V. van IJcken,et al.  Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation , 2015, The Journal of experimental medicine.

[21]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[22]  O. Nerushev,et al.  Tracing the Origin of the HSC Hierarchy Reveals an SCF-Dependent, IL-3-Independent CD43− Embryonic Precursor , 2014, Stem cell reports.

[23]  B. Göttgens,et al.  Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level , 2013, Nature Communications.

[24]  Fátima Sánchez-Cabo,et al.  Analysis of the DNA-binding profile and function of TALE homeoproteins reveals their specialization and specific interactions with Hox genes/proteins. , 2013, Cell reports.

[25]  Edward Y. Chen,et al.  Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool , 2013, BMC Bioinformatics.

[26]  N. Copeland,et al.  Meis1 preserves hematopoietic stem cells in mice by limiting oxidative stress. , 2012, Blood.

[27]  Chengcheng Zhang,et al.  Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. , 2012, Blood.

[28]  J. Frampton,et al.  Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region , 2011, The Journal of experimental medicine.

[29]  W. Ouwehand,et al.  Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. , 2010, Cell stem cell.

[30]  Yoshiaki Ito,et al.  A Runx1 Intronic Enhancer Marks Hemogenic Endothelial Cells and Hematopoietic Stem Cells , 2010, Stem cells.

[31]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[32]  N. Galjart,et al.  In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium , 2010, Nature.

[33]  G. Smyth,et al.  ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. , 2009, Journal of immunological methods.

[34]  Allen D. Delaney,et al.  Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. , 2009, Blood.

[35]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[36]  Eric H Davidson,et al.  Visualization, documentation, analysis, and communication of large-scale gene regulatory networks. , 2009, Biochimica et biophysica acta.

[37]  Elaine Dzierzak,et al.  Runx1 is required for the endothelial to hematopoietic cell transition but not thereafter , 2009, Nature.

[38]  Valer Gotea,et al.  DiRE: identifying distant regulatory elements of co-expressed genes , 2008, Nucleic Acids Res..

[39]  R. Humphries,et al.  Unraveling the crucial roles of Meis1 in leukemogenesis and normal hematopoiesis. , 2007, Genes & development.

[40]  C. Martínez-A,et al.  The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. , 2005, Developmental biology.

[41]  N. Copeland,et al.  Hematopoietic, angiogenic and eye defects in Meis1 mutant animals , 2004, The EMBO journal.

[42]  S. Orkin,et al.  Expression of CD41 marks the initiation of definitive hematopoiesis in the mouse embryo. , 2003, Blood.

[43]  T. Gu,et al.  Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. , 1999, Development.

[44]  P. D’Amore,et al.  Arterial versus venous endothelial cells , 2008, Cell and Tissue Research.