Target sites for transcallosal fibers in human visual cortex – A combined diffusion and polarized light imaging study

Transcallosal fibers of the visual system have preferential target sites within the occipital cortex of monkeys. These target sites coincide with vertical meridian representations of the visual field at borders of retinotopically defined visual areas. The existence of preferential target sites of transcallosal fibers in the human brain at the borders of early visual areas was claimed, but controversially discussed. Hence, we studied the distribution of transcallosal fibers in human visual cortex, searching for an organizational principle across early and higher visual areas. In-vivo high angular resolution diffusion imaging data of 28 subjects were used for probabilistic fiber tracking using a constrained spherical deconvolution approach. The fiber architecture within the target sites was analyzed at microscopic resolution using 3D polarized light imaging in a post-mortem human hemisphere. Fibers through a seed in the splenium of the corpus callosum reached the occipital cortex via the forceps major and the tapetum. We found target sites of these transcallosal fibers at borders of cytoarchitectonically defined occipital areas not only between early visual areas V1 and V2, V3d and V3A, and V3v and V4, but also between higher extrastriate areas, namely V4 (ventral) and posterior fusiform area FG1 as well as posterior fusiform area FG2 and lateral occipital cortex. In early visual areas, the target sites coincided with the vertical meridian representations of retinotopic maps. The spatial arrangement of the fibers in the 'border tuft' region at the V1/V2 border was found to be more complex than previously observed in myeloarchitectonic studies. In higher visual areas, our results provided additional evidence for a hemi-field representation in human area V4. The fiber topography in posterior fusiform gyrus indicated that additional retinotopic areas might exist, located between the recently identified retinotopic representations phPITv/phPITd and PHC-1/PHC-2 in lateral occipital cortex and parahippocampal gyrus.

[1]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[2]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. Dehaene,et al.  The visual word form area: a prelexical representation of visual words in the fusiform gyrus , 2002, Neuroreport.

[4]  B. Wandell,et al.  Mapping Hv4 and Ventral Occipital Cortex: the Venous Eclipse , 2022 .

[5]  A. Dale,et al.  The representation of the ipsilateral visual field in human cerebral cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Schleicher,et al.  Cytoarchitectonic mapping of the human dorsal extrastriate cortex , 2012, Brain Structure and Function.

[7]  M. Segraves,et al.  The afferent and efferent callosal connections of retinotopically defined areas in cat cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  D. J. Felleman,et al.  Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex , 1997, The Journal of comparative neurology.

[9]  T. Bocci,et al.  Visual callosal connections: role in visual processing in health and disease , 2014, Reviews in the neurosciences.

[10]  Brian A Wandell,et al.  Visual field map clusters in human cortex , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[11]  J. Olavarria,et al.  Non‐mirror‐symmetric patterns of callosal linkages in areas 17 and 18 in cat visual cortex , 1996, The Journal of comparative neurology.

[12]  P. Bartolomeo,et al.  The anatomy of cerebral achromatopsia: A reappraisal and comparison of two case reports , 2014, Cortex.

[13]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[14]  R. Tootell,et al.  Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. , 2001, Cerebral cortex.

[15]  J. Kaas,et al.  Interhemispheric connections of visual cortex of owl monkeys (Aotus trivirgatus), marmosets (Callithrix jacchus), and galagos (Galago crassicaudatus) , 1984, The Journal of comparative neurology.

[16]  Timo Dickscheid,et al.  High-Resolution Fiber Tract Reconstruction in the Human Brain by Means of Three-Dimensional Polarized Light Imaging , 2011, Front. Neuroinform..

[17]  Mark W. Woolrich,et al.  Bayesian analysis of neuroimaging data in FSL , 2009, NeuroImage.

[18]  Bevil R. Conway,et al.  Toward a Unified Theory of Visual Area V 4 , 2012 .

[19]  Stéphane Lehéricy,et al.  The pathophysiology of letter-by-letter reading , 2004, Neuropsychologia.

[20]  Ione Fine,et al.  Serveur Académique Lausannois SERVAL serval.unil.ch , 2022 .

[21]  D. Chklovskii,et al.  Maps in the brain: what can we learn from them? , 2004, Annual review of neuroscience.

[22]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[23]  Guy A Orban,et al.  Higher order visual processing in macaque extrastriate cortex. , 2008, Physiological reviews.

[24]  F. Makarov,et al.  Neuronal connection of the cortex and reconstruction of the visual space , 2005, Neuroscience and Behavioral Physiology.

[25]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[26]  M. Landy,et al.  Orientation-selective adaptation to first- and second-order patterns in human visual cortex. , 2006, Journal of neurophysiology.

[27]  E. Murphy,et al.  Visual callosal projections in the adult ferret , 1992, Visual Neuroscience.

[28]  Alex R. Wade,et al.  Functional measurements of human ventral occipital cortex: retinotopy and colour. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[29]  K. Amunts,et al.  Centenary of Brodmann's Map — Conception and Fate , 2022 .

[30]  J. W. Lewis,et al.  Two rules for callosal connectivity in striate cortex of the rat , 1995, The Journal of comparative neurology.

[31]  H. Railo,et al.  Retinotopic Maps, Spatial Tuning, and Locations of Human Visual Areas in Surface Coordinates Characterized with Multifocal and Blocked fMRI Designs , 2012, PloS one.

[32]  Kerstin E. Schmidt,et al.  The Visual Callosal Connection: A Connection Like Any Other? , 2013, Neural plasticity.

[33]  H. Wilson,et al.  Dynamics of travelling waves in visual perception , 2001, Nature.

[34]  Wim Vanduffel,et al.  Retinotopy versus Face Selectivity in Macaque Visual Cortex , 2014, Journal of Cognitive Neuroscience.

[35]  M. Caleo,et al.  The Corpus Callosum and the Visual Cortex: Plasticity Is a Game for Two , 2012, Neural plasticity.

[36]  Semir Zeki,et al.  The theory of multistage integration in the visual brain , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[37]  C. T. Van Valkenburg,et al.  EXPERIMENTAL AND PATHOLOGICO-ANATOMICAL RESEARCHES ON THE CORPUS CALLOSUM , 1913 .

[38]  Brian A. Wandell,et al.  Position sensitivity in the visual word form area , 2012, Proceedings of the National Academy of Sciences.

[39]  S. Zeki,et al.  The architecture of the colour centre in the human visual brain: new results and a review * , 2000, The European journal of neuroscience.

[40]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[41]  Michael S. Gazzaniga,et al.  Cortical Projection Topography of the Human Splenium: Hemispheric Asymmetry and Individual Differences , 2010, Journal of Cognitive Neuroscience.

[42]  J-C Houzel,et al.  Interhemispheric connections between primary visual areas: beyond the midline rule. , 2002, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[43]  S. Dehaene,et al.  Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. , 2002, Brain : a journal of neurology.

[44]  D. J. Felleman,et al.  Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex , 1986, Vision Research.

[45]  A. Schleicher,et al.  Ventral visual cortex in humans: Cytoarchitectonic mapping of two extrastriate areas , 2007, Human brain mapping.

[46]  B. Wandell,et al.  Specializations for Chromatic and Temporal Signals in Human Visual Cortex , 2005, Journal of Neuroscience.

[47]  J. Olavarria,et al.  Callosal connections correlate preferentially with ipsilateral cortical domains in cat areas 17 and 18, and with contralateral domains in the 17/18 transition zone , 2001, The Journal of comparative neurology.

[48]  Heidi Johansen-Berg,et al.  Tractography: Where Do We Go from Here? , 2011, Brain Connect..

[49]  S. Zeki,et al.  Simultaneous anatomical demonstration of the representation of the vertical and horizontal meridians in areas V2 and V3 of rhesus monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[50]  B R Payne,et al.  Visual-field map in the callosal recipient zone at the border between areas 17 and 18 in the cat , 1991, Visual Neuroscience.

[51]  Benjamin D. Singer,et al.  Retinotopic Organization of Human Ventral Visual Cortex , 2009, The Journal of Neuroscience.

[52]  Katrin Amunts,et al.  Linking retinotopic fMRI mapping and anatomical probability maps of human occipital areas V1 and V2 , 2005, NeuroImage.

[53]  Italo Masiello,et al.  Architecture and callosal connections of visual areas 17, 18, 19 and 21 in the ferret (Mustela putorius). , 2002, Cerebral cortex.

[54]  Kalanit Grill-Spector,et al.  Sparsely-distributed organization of face and limb activations in human ventral temporal cortex , 2010, NeuroImage.

[55]  Leslie G. Ungerleider,et al.  Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. , 2001, Journal of neurophysiology.

[56]  John H. R. Maunsell,et al.  The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections , 1986, The Journal of comparative neurology.

[57]  Brian A Wandell,et al.  Learning to see words. , 2012, Annual review of psychology.

[58]  D. C. Essen,et al.  The topographic organization of rhesus monkey prestriate cortex. , 1978, The Journal of physiology.

[59]  Bevil R. Conway,et al.  Toward a Unified Theory of Visual Area V4 , 2012, Neuron.

[60]  S Zeki,et al.  Localization and globalization in conscious vision. , 2001, Annual review of neuroscience.

[61]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[62]  W H Bosking,et al.  Functional Specificity of Callosal Connections in Tree Shrew Striate Cortex , 2000, The Journal of Neuroscience.

[63]  B. Stein,et al.  The Psychophysical Attributes of Heat-Induced Pain and Their Relationships to Neural Mechanisms , 1992, Journal of Cognitive Neuroscience.

[64]  Christoph Palm,et al.  A novel approach to the human connectome: Ultra-high resolution mapping of fiber tracts in the brain , 2011, NeuroImage.

[65]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[66]  A. Schleicher,et al.  Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. , 2006, Cerebral cortex.

[67]  Alan Connelly,et al.  Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping , 2010, NeuroImage.

[68]  Friedrich Sanides,et al.  Die Grenzerscheinungen am Rande der menschlichen Sehrinde , 1965, Deutsche Zeitschrift für Nervenheilkunde.

[69]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[70]  Giovanni Berlucchi,et al.  Visual interhemispheric communication and callosal connections of the occipital lobes , 2014, Cortex.

[71]  Abraham Z. Snyder,et al.  Changing Human Visual Field Organization from Early Visual to Extra-Occipital Cortex , 2007, PloS one.

[72]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[73]  J Bullier,et al.  Organization of the callosal connections of visual areas v1 and v2 in the macaque monkey , 1986, The Journal of comparative neurology.

[74]  D. V. van Essen,et al.  The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  B. Wandell,et al.  Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. , 2009, Journal of neurophysiology.

[76]  Mark Jenkinson,et al.  Correspondences between retinotopic areas and myelin maps in human visual cortex , 2014, NeuroImage.

[77]  G. Orban,et al.  The Retinotopic Organization of the Human Middle Temporal Area MT/V5 and Its Cortical Neighbors , 2010, The Journal of Neuroscience.

[78]  A. Schleicher,et al.  Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus , 2012, Brain Structure and Function.

[79]  A. W. Toga,et al.  A myelo-architectonic method for the structural classification of cortical areas , 2004, NeuroImage.

[80]  Giuseppe Iaria,et al.  Disconnection in prosopagnosia and face processing , 2008, Cortex.

[81]  Simon B. Eickhoff,et al.  Comparison of functional and cytoarchitectonic maps of human visual areas V1, V2, V3d, V3v, and V4(v) , 2010, NeuroImage.

[82]  Stephen M. Smith,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[83]  B. O'Brien,et al.  Organization of callosal linkages in visual area V2 of macaque monkey , 2000, The Journal of comparative neurology.

[84]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[85]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[86]  Alan C. Evans,et al.  Studying variability in human brain aging in a population-based German cohort—rationale and design of 1000BRAINS , 2014, Front. Aging Neurosci..

[87]  Rainer Goebel,et al.  Position coding in the visual word form area , 2012, Proceedings of the National Academy of Sciences.

[88]  B. Wandell,et al.  Functional organization of human occipital-callosal fiber tracts. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Katrin Amunts,et al.  The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex , 2014, NeuroImage.

[90]  S. Clarke,et al.  Occipital cortex in man: Organization of callosal connections, related myelo‐ and cytoarchitecture, and putative boundaries of functional visual areas , 1990, The Journal of comparative neurology.

[91]  Christoph Palm,et al.  Signal enhancement in polarized light imaging by means of independent component analysis , 2010, NeuroImage.